These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3601638)

  • 1. Relation between alpha-methyl-D-glucoside influx and brush border surface area in enterocytes from chicken cecum and jejunum.
    Planas JM; Ferrer R; Moretó M
    Pflugers Arch; 1987 May; 408(5):515-8. PubMed ID: 3601638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the chicken proximal cecum hexose transport system.
    Ferrer R; Planas JM; Moretó M
    Pflugers Arch; 1986 Jul; 407(1):100-4. PubMed ID: 3737374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption of 3-oxy-methyl-D-glucose by chicken cecum and jejunum in vivo.
    Vinardell MP; Lopera MT; Moretó M
    Comp Biochem Physiol A Comp Physiol; 1986; 85(1):171-3. PubMed ID: 2876813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexose transport by chicken cecum during development.
    Planas JM; Villá MC; Ferrer R; Moretó M
    Pflugers Arch; 1986 Aug; 407(2):216-20. PubMed ID: 3748783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jejunal and cecal 3-oxy-methyl-D-glucose absorption in chicken using a perfusion system in vivo.
    Vinardell MP; Lopera MT
    Comp Biochem Physiol A Comp Physiol; 1987; 86(4):625-7. PubMed ID: 2882891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of two distinct Na+/D-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose.
    Malo C
    Biochim Biophys Acta; 1990 Feb; 1022(1):8-16. PubMed ID: 2302406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of isolated epithelial intestinal cells from chicken cecum and jejunum.
    Ferrer R; Planas JM; Moretó M
    Rev Esp Fisiol; 1986 Sep; 42(3):341-8. PubMed ID: 3797780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell apical surface area in enterocytes from chicken small and large intestine during development.
    Ferrer R; Planas JM; Moretó M
    Poult Sci; 1995 Dec; 74(12):1995-2002. PubMed ID: 8825590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vivo inhibition by polycations of small intestinal absorption of methyl alpha-D-glucoside and leucine in the rat.
    Elsenhans B; Schümann K
    Biochem Pharmacol; 1989 Oct; 38(20):3423-9. PubMed ID: 2510735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of hexose uptake by the small and large intestine of the chicken.
    Amat C; Planas JM; Moretó M
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R1085-9. PubMed ID: 8898004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological study of the caecal epithelium of the chicken (Gallus gallus domesticus L.).
    Ferrer R; Planas JM; Durfort M; Moretó M
    Br Poult Sci; 1991 Sep; 32(4):679-91. PubMed ID: 1933442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of azaserine upon the proline and methyl alpha-D-glucoside transport systems of rat renal brush-border membranes.
    Hsu BY; Marshall CM; Corcoran SM; Segal S
    Biochim Biophys Acta; 1982 Oct; 692(1):41-51. PubMed ID: 7171588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dehydration on apical Na+-H+ exchange activity and Na+-dependent sugar transport in brush-border membrane vesicles isolated from chick intestine.
    De la Horra MC; Calonge ML; Ilundáin AA
    Pflugers Arch; 1998 Jun; 436(1):112-6. PubMed ID: 9560454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of specific dietary sugars on the jejunal mechanisms for glucose, galactose, and alpha-methyl glucoside absorption: evidence for multiple sugar carriers.
    Debnam ES; Levin RJ
    Gut; 1976 Feb; 17(2):92-9. PubMed ID: 1261889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexose transport across the apical and basolateral membrane of enterocytes from different regions of the chicken intestine.
    Ferrer R; Gil M; Moretó M; Oliveras M; Planas JM
    Pflugers Arch; 1994 Jan; 426(1-2):83-8. PubMed ID: 8146029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new class of inhibitors for in vitro small intestinal transport of sugars and amino acids in the rat.
    Elsenhans B; Blume R; Lembcke B; Caspary WF
    Biochim Biophys Acta; 1983 Jan; 727(1):135-43. PubMed ID: 6402011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of L-proline and alpha-methyl-D-glucoside by chicken proximal cecum during development.
    Moretó M; Amat C; Puchal A; Buddington RK; Planas JM
    Am J Physiol; 1991 Mar; 260(3 Pt 1):G457-63. PubMed ID: 1900674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological study of chicken cecal and jejunal mucosa during epithelial cell isolation.
    Ferrer R; Planas JM; Moretó M
    Rev Esp Fisiol; 1986 Sep; 42(3):349-53. PubMed ID: 3797781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.