These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36016913)

  • 1. Behaviour is more important than thermal performance for an Arctic host-parasite system under climate change.
    Peacock SJ; Kutz SJ; Hoar BM; Molnár PK
    R Soc Open Sci; 2022 Aug; 9(8):220060. PubMed ID: 36016913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra.
    Hoar BM; Ruckstuhl K; Kutz S
    Parasitology; 2012 Jul; 139(8):1093-100. PubMed ID: 22717158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life history matters: Differential effects of abomasal parasites on caribou fitness.
    Dickinson ER; Orsel K; Cuyler C; Kutz SJ
    Int J Parasitol; 2023 Apr; 53(4):221-231. PubMed ID: 36801266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A walk on the tundra: Host-parasite interactions in an extreme environment.
    Kutz SJ; Hoberg EP; Molnár PK; Dobson A; Verocai GG
    Int J Parasitol Parasites Wildl; 2014 Aug; 3(2):198-208. PubMed ID: 25180164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Performance Curves and the Metabolic Theory of Ecology-A Practical Guide to Models and Experiments for Parasitologists.
    Molnár PK; Sckrabulis JP; Altman KA; Raffel TR
    J Parasitol; 2017 Oct; 103(5):423-439. PubMed ID: 28604284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Change and the Dynamics of Multi-Host Parasite Life Cycles in Aquatic Ecosystems.
    Barber I; Berkhout BW; Ismail Z
    Integr Comp Biol; 2016 Oct; 56(4):561-72. PubMed ID: 27252219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel epidemiological model of gastrointestinal nematode infection to assess grazing cattle resilience by integrating host growth, parasite, grass and environmental dynamics.
    Filipe JAN; Kyriazakis I; McFarland C; Morgan ER
    Int J Parasitol; 2023 Mar; 53(3):133-155. PubMed ID: 36706804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obligate larval inhibition of Ostertagia gruehneri in Rangifer tarandus? Causes and consequences in an Arctic system.
    Hoar BM; Eberhardt AG; Kutz SJ
    Parasitology; 2012 Sep; 139(10):1339-45. PubMed ID: 22953998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal migrations and parasitism: reciprocal effects within a unified framework.
    Poulin R; de Angeli Dutra D
    Biol Rev Camb Philos Soc; 2021 Aug; 96(4):1331-1348. PubMed ID: 33663012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local thermal adaptation and local temperature regimes drive the performance of a parasitic helminth under climate change: The case of Marshallagia marshalli from wild ungulates.
    Aleuy OA; Peacock SJ; Molnár PK; Ruckstuhl KE; Kutz SJ
    Glob Chang Biol; 2023 Nov; 29(22):6217-6233. PubMed ID: 37615247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroparasite dynamics of migratory host populations.
    Peacock SJ; Bouhours J; Lewis MA; Molnár PK
    Theor Popul Biol; 2018 Mar; 120():29-41. PubMed ID: 29317230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caribou, water, and ice - fine-scale movements of a migratory arctic ungulate in the context of climate change.
    Leblond M; St-Laurent MH; Côté SD
    Mov Ecol; 2016; 4():14. PubMed ID: 27099756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ecology of fish parasites with particular reference to helminth parasites and their salmonid fish hosts in Welsh rivers: a review of some of the central questions.
    Thomas JD
    Adv Parasitol; 2002; 52():1-154. PubMed ID: 12521260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling parasite transmission in a grazing system: the importance of host behaviour and immunity.
    Fox NJ; Marion G; Davidson RS; White PC; Hutchings MR
    PLoS One; 2013; 8(11):e77996. PubMed ID: 24223133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics.
    Gehman AM; Hall RJ; Byers JE
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):744-749. PubMed ID: 29311324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and intraspecific variation affect host-parasite interactions.
    Ismail S; Farner J; Couper L; Mordecai E; Lyberger K
    Oecologia; 2024 Feb; 204(2):389-399. PubMed ID: 38006450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of phylogeny, habitat and host characteristics on the thermal sensitivity of helminth development.
    Phillips JA; Vargas Soto JS; Pawar S; Koprivnikar J; Benesh DP; Molnár PK
    Proc Biol Sci; 2022 Feb; 289(1968):20211878. PubMed ID: 35135354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and intraspecific variation affect host-parasite interactions.
    Ismail S; Farner J; Couper L; Mordecai E; Lyberger K
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change and Arctic parasites.
    Dobson A; Molnár PK; Kutz S
    Trends Parasitol; 2015 May; 31(5):181-8. PubMed ID: 25900882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gimme shelter--the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change.
    Molnár PK; Dobson AP; Kutz SJ
    Glob Chang Biol; 2013 Nov; 19(11):3291-305. PubMed ID: 23801641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.