BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 36016997)

  • 21. MRI features of cystic lesions around the knee.
    Marra MD; Crema MD; Chung M; Roemer FW; Hunter DJ; Zaim S; Diaz L; Guermazi A
    Knee; 2008 Dec; 15(6):423-38. PubMed ID: 18559292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic Resonance Imaging of Cysts, Cystlike Lesions, and Their Mimickers Around the Knee Joint.
    Shikhare SN; See PLP; Chou H; Al-Riyami AM; Peh WCG
    Can Assoc Radiol J; 2018 May; 69(2):197-214. PubMed ID: 29706255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated detection of knee cystic lesions on magnetic resonance imaging using deep learning.
    Xiongfeng T; Yingzhi L; Xianyue S; Meng H; Bo C; Deming G; Yanguo Q
    Front Med (Lausanne); 2022; 9():928642. PubMed ID: 36016997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs.
    Yang H; Jo E; Kim HJ; Cha IH; Jung YS; Nam W; Kim JY; Kim JK; Kim YH; Oh TG; Han SS; Kim H; Kim D
    J Clin Med; 2020 Jun; 9(6):. PubMed ID: 32545602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection and classification of breast lesions with You Only Look Once version 5.
    Meng M; Zhang M; Shen D; He G; Guo Y
    Future Oncol; 2022 Dec; 18(39):4361-4370. PubMed ID: 36519579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Longitudinal assessment of cyst-like lesions of the knee and their relation to radiographic osteoarthritis and MRI-detected effusion and synovitis in patients with knee pain.
    Hayashi D; Roemer FW; Dhina Z; Kwoh CK; Hannon MJ; Moore C; Guermazi A
    Arthritis Res Ther; 2010; 12(5):R172. PubMed ID: 20843319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep learning method for foot-type classification using plantar pressure images.
    Zhao Y; Zhou J; Qiu F; Liao X; Jiang J; Chen H; Lin X; Hu Y; He J; Chen J
    Front Bioeng Biotechnol; 2023; 11():1239246. PubMed ID: 37767108
    [No Abstract]   [Full Text] [Related]  

  • 28. YOLO-P: An efficient method for pear fast detection in complex orchard picking environment.
    Sun H; Wang B; Xue J
    Front Plant Sci; 2022; 13():1089454. PubMed ID: 36684785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic estimation of knee effusion from limited MRI data.
    Raman S; Gold GE; Rosen MS; Sveinsson B
    Sci Rep; 2022 Feb; 12(1):3155. PubMed ID: 35210490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breast Tumor Detection and Classification in Mammogram Images Using Modified YOLOv5 Network.
    Mohiyuddin A; Basharat A; Ghani U; Peter V; Abbas S; Naeem OB; Rizwan M
    Comput Math Methods Med; 2022; 2022():1359019. PubMed ID: 35027940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database.
    Tack A; Shestakov A; Lüdke D; Zachow S
    Front Bioeng Biotechnol; 2021; 9():747217. PubMed ID: 34926416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks.
    Tng SS; Le NQK; Yeh HY; Chua MCH
    J Proteome Res; 2022 Jan; 21(1):265-273. PubMed ID: 34812044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential of deep representative learning features to interpret the sequence information in proteomics.
    Le NQK
    Proteomics; 2022 Jan; 22(1-2):e2100232. PubMed ID: 34730875
    [No Abstract]   [Full Text] [Related]  

  • 34. Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM).
    Si L; Zhong J; Huo J; Xuan K; Zhuang Z; Hu Y; Wang Q; Zhang H; Yao W
    Eur Radiol; 2022 Feb; 32(2):1353-1361. PubMed ID: 34347157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative.
    Panfilov E; Tiulpin A; Nieminen MT; Saarakkala S; Casula V
    J Orthop Res; 2022 May; 40(5):1113-1124. PubMed ID: 34324223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning-Based Magnetic Resonance Imaging Image Features for Diagnosis of Anterior Cruciate Ligament Injury.
    Li Z; Ren S; Zhou R; Jiang X; You T; Li C; Zhang W
    J Healthc Eng; 2021; 2021():4076175. PubMed ID: 34306588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation.
    Yap MH; Hachiuma R; Alavi A; Brüngel R; Cassidy B; Goyal M; Zhu H; Rückert J; Olshansky M; Huang X; Saito H; Hassanpour S; Friedrich CM; Ascher DB; Song A; Kajita H; Gillespie D; Reeves ND; Pappachan JM; O'Shea C; Frank E
    Comput Biol Med; 2021 Aug; 135():104596. PubMed ID: 34247133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies.
    Astuto B; Flament I; K Namiri N; Shah R; Bharadwaj U; M Link T; D Bucknor M; Pedoia V; Majumdar S
    Radiol Artif Intell; 2021 May; 3(3):e200165. PubMed ID: 34142088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.