BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36016997)

  • 41. Diagnosis of Brain Tumor Using Light Weight Deep Learning Model with Fine-Tuning Approach.
    Shelatkar T; Urvashi D; Shorfuzzaman M; Alsufyani A; Lakshmanna K
    Comput Math Methods Med; 2022; 2022():2858845. PubMed ID: 35813426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks.
    Wang T; Yang F; Tsui KL
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32756365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Giant Ganglion Cyst Arising from Lateral Hoffa's Fat Pad of the Knee.
    Vaishya R; Kansagra A; Agarwal AK; Vijay V
    J Orthop Case Rep; 2020; 9(6):36-39. PubMed ID: 32548025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning-based weak micro-defect detection on an optical lens surface with micro vision.
    Yang W; Chen M; Wu H; Lin Z; Kong D; Xie S; Takamasu K
    Opt Express; 2023 Feb; 31(4):5593-5608. PubMed ID: 36823835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard.
    Zhang L; Li M; Zhou Y; Lu G; Zhou Q
    J Magn Reson Imaging; 2020 Dec; 52(6):1745-1752. PubMed ID: 32715584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep Learning for Microfluidic-Assisted
    Zhang J; Liu S; Yuan H; Yong R; Duan S; Li Y; Spencer J; Lim EG; Yu L; Song P
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512650
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning for real-time detection of nasopharyngeal carcinoma during nasopharyngeal endoscopy.
    He Z; Zhang K; Zhao N; Wang Y; Hou W; Meng Q; Li C; Chen J; Li J
    iScience; 2023 Oct; 26(10):107463. PubMed ID: 37720094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Torn ACL Mapping in Knee MRI Images Using Deep Convolution Neural Network with Inception-v3.
    Sridhar S; Amutharaj J; Valsalan P; Arthi B; Ramkumar S; Mathupriya S; Rajendran T; Waji YA
    J Healthc Eng; 2022; 2022():7872500. PubMed ID: 35178233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study on Pear Flowers Detection Performance of YOLO-PEFL Model Trained With Synthetic Target Images.
    Wang C; Wang Y; Liu S; Lin G; He P; Zhang Z; Zhou Y
    Front Plant Sci; 2022; 13():911473. PubMed ID: 35747884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-Time Pattern-Recognition of GPR Images with YOLO v3 Implemented by Tensorflow.
    Li Y; Zhao Z; Luo Y; Qiu Z
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study.
    Park CJ; Cho YS; Chung MJ; Kim YK; Kim HJ; Kim K; Ko JW; Chung WH; Cho BH
    J Med Internet Res; 2021 Sep; 23(9):e29678. PubMed ID: 34546181
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep Learning for Clothing Style Recognition Using YOLOv5.
    Chang YH; Zhang YY
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DA-ActNN-YOLOV5: Hybrid YOLO v5 Model with Data Augmentation and Activation of Compression Mechanism for Potato Disease Identification.
    Dai G; Hu L; Fan J
    Comput Intell Neurosci; 2022; 2022():6114061. PubMed ID: 36193182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
    Su Y; Liu Q; Xie W; Hu P
    Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward automatic reformation at the orbitomeatal line in head computed tomography using object detection algorithm.
    Ichikawa S; Itadani H; Sugimori H
    Phys Eng Sci Med; 2022 Sep; 45(3):835-845. PubMed ID: 35793033
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging.
    Stollmayer R; Budai BK; Tóth A; Kalina I; Hartmann E; Szoldán P; Bérczi V; Maurovich-Horvat P; Kaposi PN
    World J Gastroenterol; 2021 Sep; 27(35):5978-5988. PubMed ID: 34629814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
    Al-Antari MA; Al-Masni MA; Kim TS
    Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model.
    Li J; Qian K; Liu J; Huang Z; Zhang Y; Zhao G; Wang H; Li M; Liang X; Zhou F; Yu X; Li L; Wang X; Yang X; Jiang Q
    J Orthop Translat; 2022 May; 34():91-101. PubMed ID: 35847603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.