BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 36017082)

  • 1. Skin biomechanics: a potential therapeutic intervention target to reduce scarring.
    Hosseini M; Brown J; Khosrotehrani K; Bayat A; Shafiee A
    Burns Trauma; 2022; 10():tkac036. PubMed ID: 36017082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation.
    Barnes LA; Marshall CD; Leavitt T; Hu MS; Moore AL; Gonzalez JG; Longaker MT; Gurtner GC
    Adv Wound Care (New Rochelle); 2018 Feb; 7(2):47-56. PubMed ID: 29392093
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanomodulatory biomaterials prospects in scar prevention and treatment.
    Fernandes MG; da Silva LP; Cerqueira MT; Ibañez R; Murphy CM; Reis RL; O Brien FJ; Marques AP
    Acta Biomater; 2022 Sep; 150():22-33. PubMed ID: 35914694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward understanding scarless skin wound healing and pathological scarring.
    Karppinen SM; Heljasvaara R; Gullberg D; Tasanen K; Pihlajaniemi T
    F1000Res; 2019; 8():. PubMed ID: 31231509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanotransduction in skin wound healing and scar formation: Potential therapeutic targets for controlling hypertrophic scarring.
    Yin J; Zhang S; Yang C; Wang Y; Shi B; Zheng Q; Zeng N; Huang H
    Front Immunol; 2022; 13():1028410. PubMed ID: 36325354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Inflammation Pre-Emptively or at the Time of Cutaneous Injury Optimises Outcome of Skin Scarring.
    Ud-Din S; Bayat A
    Front Immunol; 2022; 13():883239. PubMed ID: 35711461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of pathological scarring: role of myofibroblasts and current developments.
    Sarrazy V; Billet F; Micallef L; Coulomb B; Desmoulière A
    Wound Repair Regen; 2011 Sep; 19 Suppl 1():s10-5. PubMed ID: 21793960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of Dermis: Scarring and Cells Involved.
    Rippa AL; Kalabusheva EP; Vorotelyak EA
    Cells; 2019 Jun; 8(6):. PubMed ID: 31216669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of tape for the management of hypertrophic scar development: A comprehensive review.
    O'Reilly S; Crofton E; Brown J; Strong J; Ziviani J
    Scars Burn Heal; 2021; 7():20595131211029206. PubMed ID: 34290886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Inflammasomes in Keloids and Hypertrophic Scars-Lessons Learned from Chronic Diabetic Wounds and Skin Fibrosis.
    Huang C; Ogawa R
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to Minimize Surgical Scarring: Translation of Lessons Learned from Bedside to Bench and Back.
    Parikh UM; Mentz J; Collier I; Davis MJ; Abu-Ghname A; Colchado D; Short WD; King A; Buchanan EP; Balaji S
    Adv Wound Care (New Rochelle); 2022 Jun; 11(6):311-329. PubMed ID: 34416825
    [No Abstract]   [Full Text] [Related]  

  • 13. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration.
    Xue M; Zhao R; March L; Jackson C
    Adv Wound Care (New Rochelle); 2022 Feb; 11(2):87-107. PubMed ID: 33607934
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: Towards the development of an in vitro human dermal hypertrophic scar model.
    Chawla S; Ghosh S
    Acta Biomater; 2018 Mar; 69():131-145. PubMed ID: 29330036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Model for Cutaneous Wound Healing and Scarring in the Rat.
    Zhou S; Wang W; Zhou S; Zhang G; He J; Li Q
    Plast Reconstr Surg; 2019 Feb; 143(2):468-477. PubMed ID: 30531620
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Neves LMG; Wilgus TA; Bayat A
    Adv Wound Care (New Rochelle); 2023 Feb; 12(2):97-116. PubMed ID: 34915768
    [No Abstract]   [Full Text] [Related]  

  • 17. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis - Keloids and hypertrophic scars may be vascular disorders.
    Ogawa R; Akaishi S
    Med Hypotheses; 2016 Nov; 96():51-60. PubMed ID: 27959277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring.
    Crawford J; Nygard K; Gan BS; O'Gorman DB
    Exp Dermatol; 2015 Feb; 24(2):120-6. PubMed ID: 25421393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the TGF-β family in wound healing, burns and scarring: a review.
    Penn JW; Grobbelaar AO; Rolfe KJ
    Int J Burns Trauma; 2012; 2(1):18-28. PubMed ID: 22928164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and upcoming therapies to modulate skin scarring and fibrosis.
    Coentro JQ; Pugliese E; Hanley G; Raghunath M; Zeugolis DI
    Adv Drug Deliv Rev; 2019 Jun; 146():37-59. PubMed ID: 30172924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.