BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36017119)

  • 1. Sputum Cytokine Profiling in COPD: Comparison Between Stable Disease and Exacerbation.
    Barta I; Paska C; Antus B
    Int J Chron Obstruct Pulmon Dis; 2022; 17():1897-1908. PubMed ID: 36017119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis and validation reveal the pathogenesis and a novel biomarker of acute exacerbation of chronic obstructive pulmonary disease.
    Wang H; Zhong Y; Li N; Yu M; Zhu L; Wang L; Chen F; Xu Y; Liu J; Huang H
    Respir Res; 2022 Feb; 23(1):27. PubMed ID: 35151329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulating miR-146a/b correlates with inflammatory cytokines in COPD and could predict the risk of acute exacerbation COPD.
    Chen BB; Li ZH; Gao S
    Medicine (Baltimore); 2018 Feb; 97(7):e9820. PubMed ID: 29443743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sputum Proteomic Signature That Associates with Increased IL-1β Levels and Bacterial Exacerbations of COPD.
    Damera G; Pham TH; Zhang J; Ward CK; Newbold P; Ranade K; Sethi S
    Lung; 2016 Jun; 194(3):363-9. PubMed ID: 27083436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease.
    Gao P; Zhang J; He X; Hao Y; Wang K; Gibson PG
    PLoS One; 2013; 8(5):e57678. PubMed ID: 23741289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long non-coding RNA PVT1, a novel biomarker for chronic obstructive pulmonary disease progression surveillance and acute exacerbation prediction potentially through interaction with microRNA-146a.
    Wang Y; Lyu X; Wu X; Yu L; Hu K
    J Clin Lab Anal; 2020 Aug; 34(8):e23346. PubMed ID: 32342557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring PI3Kδ Molecular Pathways in Stable COPD and Following an Acute Exacerbation, Two Randomized Controlled Trials.
    Begg M; Hamblin JN; Jarvis E; Bradley G; Mark S; Michalovich D; Lennon M; Wajdner HE; Amour A; Wilson R; Saunders K; Tanaka R; Arai S; Tang T; Van Holsbeke C; De Backer J; Vos W; Titlestad IL; FitzGerald JM; Killian K; Bourbeau J; Poirier C; Maltais F; Cahn A; Hessel EM
    Int J Chron Obstruct Pulmon Dis; 2021; 16():1621-1636. PubMed ID: 34113094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Siglec-9 in peripheral blood neutrophils was increased and associated with disease severity in patients with AECOPD.
    Ge L; Wang N; Chen Z; Xu S; Zhou L
    Cytokine; 2024 May; 177():156558. PubMed ID: 38412768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The clinical value of lncRNA MALAT1 and its targets miR-125b, miR-133, miR-146a, and miR-203 for predicting disease progression in chronic obstructive pulmonary disease patients.
    Liu S; Liu M; Dong L
    J Clin Lab Anal; 2020 Sep; 34(9):e23410. PubMed ID: 32583510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Antioxidant Enzyme Activity during Exacerbations of Chronic Obstructive Pulmonary Disease.
    Antus B; Paska C; Simon B; Barta I
    COPD; 2018 Oct; 15(5):496-502. PubMed ID: 30475645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring oxidative stress during chronic obstructive pulmonary disease exacerbations using malondialdehyde.
    Antus B; Harnasi G; Drozdovszky O; Barta I
    Respirology; 2014 Jan; 19(1):74-9. PubMed ID: 23834671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species in peripheral blood and sputum neutrophils during bacterial and nonbacterial acute exacerbation of chronic obstructive pulmonary disease.
    Vaitkus M; Lavinskiene S; Barkauskiene D; Bieksiene K; Jeroch J; Sakalauskas R
    Inflammation; 2013 Dec; 36(6):1485-93. PubMed ID: 23872721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between peripheral blood WBCs C3aR mRNA level and plasma C3a, C3aR, IL-1β concentrations and acute exacerbation of chronic obstructive pulmonary disease.
    Li Z; He P; Ding H; Gong L; Wu J; Zhong C; Liu D
    Immunobiology; 2022 Jan; 227(1):152164. PubMed ID: 34923262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LncRNAs NR-026690 and ENST00000447867 are upregulated in CD4
    Qi X; Chen H; Fu B; Huang Z; Mou Y; Liu J; Xu Y; Xiong W; Cao Y
    Int J Chron Obstruct Pulmon Dis; 2019; 14():699-711. PubMed ID: 30988604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new inflammation marker of chronic obstructive pulmonary disease-adiponectin.
    Xie J; Yang XY; Shi JD; Deng XQ; Long W
    World J Emerg Med; 2010; 1(3):190-5. PubMed ID: 25214966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of the sputum microbiome in COPD exacerbations and correlations between clinical indices.
    Su L; Qiao Y; Luo J; Huang R; Li Z; Zhang H; Zhao H; Wang J; Xiao Y
    J Transl Med; 2022 Feb; 20(1):76. PubMed ID: 35123490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysregulated circulating microRNA-126 in chronic obstructive pulmonary disease: linkage with acute exacerbation risk, severity degree, and inflammatory cytokines.
    Wang C; Feng D; Dong S; He R; Fan B
    J Clin Lab Anal; 2022 Mar; 36(3):e24204. PubMed ID: 35064606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The expression and implications of human alpha-defensin 1-3 in serum and induced sputum in patients with chronic obstructive pulmonary disease].
    Wang Z; Yao WZ; Xia GG; Sun DJ
    Zhonghua Jie He He Hu Xi Za Zhi; 2008 Jun; 31(6):410-3. PubMed ID: 19031798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining changes in vascular function, arterial stiffness and systemic inflammation during hospitalization and recovery from an acute exacerbation of chronic obstructive pulmonary disease.
    Fuhr DP; Brotto AR; Rowe BH; Bhutani M; Rosychuk RJ; Stickland MK
    Sci Rep; 2023 Jul; 13(1):12245. PubMed ID: 37507427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Network Analysis Identifies Changes in the Level of Proteins Involved in Platelet Degranulation, Proteolysis and Cholesterol Metabolism Pathways in AECOPD Patients.
    Tan DBA; Ito J; Peters K; Livk A; Lipscombe RJ; Casey TM; Moodley YP
    COPD; 2020 Feb; 17(1):29-33. PubMed ID: 31920121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.