These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 36017511)
1. A multicenter prospective study on postoperative pulmonary complications prediction in geriatric patients with deep neural network model. Peng X; Zhu T; Chen G; Wang Y; Hao X Front Surg; 2022; 9():976536. PubMed ID: 36017511 [TBL] [Abstract][Full Text] [Related]
2. Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study. Peng X; Zhu T; Wang T; Wang F; Li K; Hao X BMC Anesthesiol; 2022 Sep; 22(1):284. PubMed ID: 36088288 [TBL] [Abstract][Full Text] [Related]
3. Predicting Postoperative Mortality With Deep Neural Networks and Natural Language Processing: Model Development and Validation. Chen PF; Chen L; Lin YK; Li GH; Lai F; Lu CW; Yang CY; Chen KC; Lin TY JMIR Med Inform; 2022 May; 10(5):e38241. PubMed ID: 35536634 [TBL] [Abstract][Full Text] [Related]
4. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Li J; Chen Q; Hu X; Yuan P; Cui L; Tu L; Cui J; Huang J; Jiang T; Ma X; Yao X; Zhou C; Lu H; Xu J Int J Med Inform; 2021 May; 149():104429. PubMed ID: 33647600 [TBL] [Abstract][Full Text] [Related]
5. Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. Bonde A; Varadarajan KM; Bonde N; Troelsen A; Muratoglu OK; Malchau H; Yang AD; Alam H; Sillesen M Lancet Digit Health; 2021 Aug; 3(8):e471-e485. PubMed ID: 34215564 [TBL] [Abstract][Full Text] [Related]
6. Protocol for the derivation and external validation of a 30-day postoperative pulmonary complications (PPCs) risk prediction model for elderly patients undergoing thoracic surgery: a cohort study in southern China. Wei W; Zheng X; Zhou CW; Zhang A; Zhou M; Yao H; Jiang T BMJ Open; 2023 Feb; 13(2):e066815. PubMed ID: 36764716 [TBL] [Abstract][Full Text] [Related]
7. Risk prediction model for respiratory complications after lung resection: An observational multicentre study. Yepes-Temiño MJ; Monedero P; Pérez-Valdivieso JR; Eur J Anaesthesiol; 2016 May; 33(5):326-33. PubMed ID: 26535555 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence-Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study. Chen W; Lu Z; You L; Zhou L; Xu J; Chen K JMIR Med Inform; 2020 Jun; 8(6):e18186. PubMed ID: 32538798 [TBL] [Abstract][Full Text] [Related]
9. Automated Identification of Heart Failure with Reduced Ejection Fraction using Deep Learning-based Natural Language Processing. Nargesi AA; Adejumo P; Dhingra L; Rosand B; Hengartner A; Coppi A; Benigeri S; Sen S; Ahmad T; Nadkarni GN; Lin Z; Ahmad FS; Krumholz HM; Khera R medRxiv; 2023 Sep; ():. PubMed ID: 37745445 [TBL] [Abstract][Full Text] [Related]
10. Ultrasonographic Assessment of Diaphragmatic Inspiratory Amplitude and Its Association with Postoperative Pulmonary Complications in Upper Abdominal Surgery: A Prospective, Longitudinal, Observational Study. Vanamail PV; Balakrishnan K; Prahlad S; Chockalingam P; Dash R; Soundararajan DK Indian J Crit Care Med; 2021 Sep; 25(9):1031-1039. PubMed ID: 34963722 [TBL] [Abstract][Full Text] [Related]
11. The LAS VEGAS risk score for prediction of postoperative pulmonary complications: An observational study. Neto AS; da Costa LGV; Hemmes SNT; Canet J; Hedenstierna G; Jaber S; Hiesmayr M; Hollmann MW; Mills GH; Vidal Melo MF; Pearse R; Putensen C; Schmid W; Severgnini P; Wrigge H; Gama de Abreu M; Pelosi P; Schultz MJ; Eur J Anaesthesiol; 2018 Sep; 35(9):691-701. PubMed ID: 29916860 [TBL] [Abstract][Full Text] [Related]
12. Usefulness of combining clinical and biochemical parameters for prediction of postoperative pulmonary complications after lung resection surgery. Garutti I; De la Gala F; Piñeiro P; Rancan L; Vara E; Reyes A; Puente-Maestu L; Bellón JM; Simón C J Clin Monit Comput; 2019 Dec; 33(6):1043-1054. PubMed ID: 30656507 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models. Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S; J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605 [TBL] [Abstract][Full Text] [Related]
14. Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators. Fernandez-Bustamante A; Frendl G; Sprung J; Kor DJ; Subramaniam B; Martinez Ruiz R; Lee JW; Henderson WG; Moss A; Mehdiratta N; Colwell MM; Bartels K; Kolodzie K; Giquel J; Vidal Melo MF JAMA Surg; 2017 Feb; 152(2):157-166. PubMed ID: 27829093 [TBL] [Abstract][Full Text] [Related]
15. Detection of Bacteremia in Surgical In-Patients Using Recurrent Neural Network Based on Time Series Records: Development and Validation Study. Park HJ; Jung DY; Ji W; Choi CM J Med Internet Res; 2020 Aug; 22(8):e19512. PubMed ID: 32669261 [TBL] [Abstract][Full Text] [Related]
16. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
17. Harnessing Machine Learning for Prediction of Postoperative Pulmonary Complications: Retrospective Cohort Design. Kim JH; Cheon BR; Kim MG; Hwang SM; Lim SY; Lee JJ; Kwon YS J Clin Med; 2023 Aug; 12(17):. PubMed ID: 37685748 [TBL] [Abstract][Full Text] [Related]
19. Incidence and risk factors of postoperative pulmonary complications in noncardiac Chinese patients: a multicenter observational study in university hospitals. Jin Y; Xie G; Wang H; Jin L; Li J; Cheng B; Zhang K; Hoeft A; Fang X Biomed Res Int; 2015; 2015():265165. PubMed ID: 25821791 [TBL] [Abstract][Full Text] [Related]
20. Development and Validation of a Deep Learning Model for Earlier Detection of Cognitive Decline From Clinical Notes in Electronic Health Records. Wang L; Laurentiev J; Yang J; Lo YC; Amariglio RE; Blacker D; Sperling RA; Marshall GA; Zhou L JAMA Netw Open; 2021 Nov; 4(11):e2135174. PubMed ID: 34792589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]