These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 36017895)

  • 1. From Ferroelectric Material Optimization to Neuromorphic Devices.
    Mikolajick T; Park MH; Begon-Lours L; Slesazeck S
    Adv Mater; 2023 Sep; 35(37):e2206042. PubMed ID: 36017895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroelectric Transistors for Memory and Neuromorphic Device Applications.
    Kim IJ; Lee JS
    Adv Mater; 2023 Jun; 35(22):e2206864. PubMed ID: 36484488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revival of Ferroelectric Memories Based on Emerging Fluorite-Structured Ferroelectrics.
    Park JY; Choe DH; Lee DH; Yu GT; Yang K; Kim SH; Park GH; Nam SG; Lee HJ; Jo S; Kuh BJ; Ha D; Kim Y; Heo J; Park MH
    Adv Mater; 2023 Oct; 35(43):e2204904. PubMed ID: 35952355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hafnium Oxide (HfO
    Banerjee W; Kashir A; Kamba S
    Small; 2022 Jun; 18(23):e2107575. PubMed ID: 35510954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of emergent simple pseudo-binary ferroelectrics and their potential in neuromorphic computing devices.
    Jayakrishnan AR; Kim JS; Hellenbrand M; Marques LS; MacManus-Driscoll JL; Silva JPB
    Mater Horiz; 2024 May; 11(10):2355-2371. PubMed ID: 38477152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferroelectric field-effect transistors based on HfO
    Mulaosmanovic H; Breyer ET; Dünkel S; Beyer S; Mikolajick T; Slesazeck S
    Nanotechnology; 2021 Sep; 32(50):. PubMed ID: 34320479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulative Polarization Reversal in Nanoscale Ferroelectric Transistors.
    Mulaosmanovic H; Mikolajick T; Slesazeck S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23997-24002. PubMed ID: 29947210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New-Generation Ferroelectric AlScN Materials.
    Zhang Y; Zhu Q; Tian B; Duan C
    Nanomicro Lett; 2024 Jun; 16(1):227. PubMed ID: 38918252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Nonvolatile State Resistive Switching Arising from Ferroelectricity and Oxygen Vacancy Migration.
    Lü W; Li C; Zheng L; Xiao J; Lin W; Li Q; Wang XR; Huang Z; Zeng S; Han K; Zhou W; Zeng K; Chen J; Ariando ; Cao W; Venkatesan T
    Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28439926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors.
    Mulaosmanovic H; Ocker J; Müller S; Schroeder U; Müller J; Polakowski P; Flachowsky S; van Bentum R; Mikolajick T; Slesazeck S
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3792-3798. PubMed ID: 28071052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of growth temperature on self-rectifying BaTiO
    Patil H; Rehman S; Kim H; Kadam KD; Khan MA; Khan K; Aziz J; Ismail M; Khan MF; Kim DK
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):836-844. PubMed ID: 37625358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferroelectric materials for neuroinspired computing applications.
    Wang D; Hao S; Dkhil B; Tian B; Duan C
    Fundam Res; 2024 Sep; 4(5):1272-1291. PubMed ID: 39431127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferroelectrics-Integrated Two-Dimensional Devices toward Next-Generation Electronics.
    Jin T; Mao J; Gao J; Han C; Loh KP; Wee ATS; Chen W
    ACS Nano; 2022 Sep; 16(9):13595-13611. PubMed ID: 36099580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Black Phosphorus/Ferroelectric P(VDF-TrFE) Field-Effect Transistors with High Mobility for Energy-Efficient Artificial Synapse in High-Accuracy Neuromorphic Computing.
    Dang Z; Guo F; Duan H; Zhao Q; Fu Y; Jie W; Jin K; Hao J
    Nano Lett; 2023 Jul; 23(14):6752-6759. PubMed ID: 37283505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant Ferroelectric Resistance Switching Controlled by a Modulatory Terminal for Low-Power Neuromorphic In-Memory Computing.
    Xue F; He X; Wang Z; Retamal JRD; Chai Z; Jing L; Zhang C; Fang H; Chai Y; Jiang T; Zhang W; Alshareef HN; Ji Z; Li LJ; He JH; Zhang X
    Adv Mater; 2021 May; 33(21):e2008709. PubMed ID: 33860581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferroelectric Tunnel Junctions: Modulations on the Potential Barrier.
    Wen Z; Wu D
    Adv Mater; 2020 Jul; 32(27):e1904123. PubMed ID: 31583775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures.
    Kho W; Hwang H; Kim J; Park G; Ahn SE
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferroelectric Aluminum Scandium Nitride Transistors with Intrinsic Switching Characteristics and Artificial Synaptic Functions for Neuromorphic Computing.
    Gao J; Chien YC; Li L; Lee HK; Samanta S; Varghese B; Xiang H; Li M; Liu C; Zhu Y; Chen L; Ang KW
    Small; 2024 Nov; 20(47):e2404711. PubMed ID: 39150087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization Pruning: Reliability Enhancement of Hafnia-Based Ferroelectric Devices for Memory and Neuromorphic Computing.
    Koo RH; Shin W; Kim J; Yim J; Ko J; Jung G; Im J; Park SH; Kim JJ; Cheema SS; Kwon D; Lee JH
    Adv Sci (Weinh); 2024 Nov; 11(43):e2407729. PubMed ID: 39324607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.