BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 36018059)

  • 1. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing.
    Kumar K; Mandal SN; Pradhan B; Kaur P; Kaur K; Neelam K
    Plant Cell Physiol; 2022 Nov; 63(11):1607-1623. PubMed ID: 36018059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR Way for Fast-Forward Crop Domestication.
    Khan MZ; Zaidi SS; Amin I; Mansoor S
    Trends Plant Sci; 2019 Apr; 24(4):293-296. PubMed ID: 30738789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid improvement of domestication traits in an orphan crop by genome editing.
    Lemmon ZH; Reem NT; Dalrymple J; Soyk S; Swartwood KE; Rodriguez-Leal D; Van Eck J; Lippman ZB
    Nat Plants; 2018 Oct; 4(10):766-770. PubMed ID: 30287957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato.
    Zsögön A; Cermak T; Voytas D; Peres LE
    Plant Sci; 2017 Mar; 256():120-130. PubMed ID: 28167025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive crop-wild hybridization during Brassica evolution and selection during the domestication and diversification of Brassica crops.
    Saban JM; Romero AJ; Ezard THG; Chapman MA
    Genetics; 2023 Apr; 223(4):. PubMed ID: 36810660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing and Designer Crops for the Future.
    Rana S; Aggarwal PR; Shukla V; Giri U; Verma S; Muthamilarasan M
    Methods Mol Biol; 2022; 2408():37-69. PubMed ID: 35325415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Jian LM; Xiao YJ; Yan JB
    Yi Chuan; 2023 Sep; 45(9):741-753. PubMed ID: 37731229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Food Crop Domestication in the Age of Gene Editing: Genetic, Agronomic and Cultural Change Remain Co-evolutionarily Entangled.
    Van Tassel DL; Tesdell O; Schlautman B; Rubin MJ; DeHaan LR; Crews TE; Streit Krug A
    Front Plant Sci; 2020; 11():789. PubMed ID: 32595676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Razzaq A; Saleem F; Wani SH; Abdelmohsen SAM; Alyousef HA; Abdelbacki AMM; Alkallas FH; Tamam N; Elansary HO
    Front Plant Sci; 2021; 12():681367. PubMed ID: 34603347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement.
    Ahmar S; Saeed S; Khan MHU; Ullah Khan S; Mora-Poblete F; Kamran M; Faheem A; Maqsood A; Rauf M; Saleem S; Hong WJ; Jung KH
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing.
    Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system.
    Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD
    Gene; 2020 Aug; 753():144795. PubMed ID: 32450202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops.
    Wang T; Zhang C; Zhang H; Zhu H
    J Agric Food Chem; 2021 Nov; 69(45):13260-13269. PubMed ID: 33734711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene editing of non-coding regulatory DNA and its application in crop improvement.
    Chen YH; Lu J; Yang X; Huang LC; Zhang CQ; Liu QQ; Li QF
    J Exp Bot; 2023 Oct; 74(19):6158-6175. PubMed ID: 37549968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.