These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36018232)

  • 1. FastMix: a versatile data integration pipeline for cell type-specific biomarker inference.
    Zhang Y; Sun H; Mandava A; Aevermann BD; Kollmann TR; Scheuermann RH; Qiu X; Qian Y
    Bioinformatics; 2022 Oct; 38(20):4735-4744. PubMed ID: 36018232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
    Sturm G; Finotello F; Petitprez F; Zhang JD; Baumbach J; Fridman WH; List M; Aneichyk T
    Bioinformatics; 2019 Jul; 35(14):i436-i445. PubMed ID: 31510660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts.
    Navarro JF; Sjöstrand J; Salmén F; Lundeberg J; Ståhl PL
    Bioinformatics; 2017 Aug; 33(16):2591-2593. PubMed ID: 28398467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.
    Lee AJ; Chang I; Burel JG; Lindestam Arlehamn CS; Mandava A; Weiskopf D; Peters B; Sette A; Scheuermann RH; Qian Y
    Cytometry A; 2018 Jun; 93(6):597-610. PubMed ID: 29665244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DPre: computational identification of differentiation bias and genes underlying cell type conversions.
    Steffens S; Fu X; He F; Li Y; Babarinde IA; Hutchins AP
    Bioinformatics; 2020 Mar; 36(5):1637-1639. PubMed ID: 31621827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian modeling of spatial molecular profiling data via Gaussian process.
    Li Q; Zhang M; Xie Y; Xiao G
    Bioinformatics; 2021 Nov; 37(22):4129-4136. PubMed ID: 34146105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-analysis of cell- specific transcriptomic data using fuzzy c-means clustering discovers versatile viral responsive genes.
    Khan A; Katanic D; Thakar J
    BMC Bioinformatics; 2017 Jun; 18(1):295. PubMed ID: 28587632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetaQUBIC: a computational pipeline for gene-level functional profiling of metagenome and metatranscriptome.
    Ma A; Sun M; McDermaid A; Liu B; Ma Q
    Bioinformatics; 2019 Nov; 35(21):4474-4477. PubMed ID: 31116375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification.
    Malek M; Taghiyar MJ; Chong L; Finak G; Gottardo R; Brinkman RR
    Bioinformatics; 2015 Feb; 31(4):606-7. PubMed ID: 25378466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOJITOO: a fast and universal method for integration of multimodal single-cell data.
    Cheng M; Li Z; Costa IG
    Bioinformatics; 2022 Jun; 38(Suppl 1):i282-i289. PubMed ID: 35758807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STtools: A Comprehensive Software Pipeline for Ultra-high Resolution Spatial Transcriptomics Data.
    Xi J; Lee JH; Kang HM; Jun G
    Bioinform Adv; 2022; 2(1):. PubMed ID: 36284674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering spatial transcriptomics data.
    Teng H; Yuan Y; Bar-Joseph Z
    Bioinformatics; 2022 Jan; 38(4):997-1004. PubMed ID: 34623423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HAPPI GWAS: Holistic Analysis with Pre- and Post-Integration GWAS.
    Slaten ML; Chan YO; Shrestha V; Lipka AE; Angelovici R
    Bioinformatics; 2020 Nov; 36(17):4655-4657. PubMed ID: 32579187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling tree-based automated machine learning to biomedical big data with a feature set selector.
    Le TT; Fu W; Moore JH
    Bioinformatics; 2020 Jan; 36(1):250-256. PubMed ID: 31165141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LSTrAP-Kingdom: an automated pipeline to generate annotated gene expression atlases for kingdoms of life.
    Goh W; Mutwil M
    Bioinformatics; 2021 Sep; 37(18):3053-3055. PubMed ID: 33704421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. riboCleaner: a pipeline to identify and quantify rRNA read contamination from RNA-seq data in plants.
    Huang P; Davis E; Cao X; Cameron HJ
    Bioinformatics; 2022 Aug; 38(15):3840-3843. PubMed ID: 35731209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.