These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36018482)

  • 21. Structure-Free Validation of Residual Dipolar Coupling and Paramagnetic Relaxation Enhancement Measurements of Disordered Proteins.
    Newby FN; De Simone A; Yagi-Utsumi M; Salvatella X; Dobson CM; Vendruscolo M
    Biochemistry; 2015 Nov; 54(46):6876-86. PubMed ID: 26479087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific and nonspecific interactions in ultraweak protein-protein associations revealed by solvent paramagnetic relaxation enhancements.
    Johansson H; Jensen MR; Gesmar H; Meier S; Vinther JM; Keeler C; Hodsdon ME; Led JJ
    J Am Chem Soc; 2014 Jul; 136(29):10277-86. PubMed ID: 24969589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid measurement of scalar three-bond 1HN-1H alpha spin coupling constants in 15N-labelled proteins.
    Ponstingl H; Otting G
    J Biomol NMR; 1998 Aug; 12(2):319-24. PubMed ID: 9752002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR Characterization of Long-Range Contacts in Intrinsically Disordered Proteins from Paramagnetic Relaxation Enhancement in
    Mateos B; Konrat R; Pierattelli R; Felli IC
    Chembiochem; 2019 Feb; 20(3):335-339. PubMed ID: 30407719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting the resolution of low-field [Formula: see text] relaxation experiments on intrinsically disordered proteins with triple-resonance NMR.
    Jaseňáková Z; Zapletal V; Padrta P; Zachrdla M; Bolik-Coulon N; Marquardsen T; Tyburn JM; Žídek L; Ferrage F; Kadeřávek P
    J Biomol NMR; 2020 Mar; 74(2-3):139-145. PubMed ID: 31960224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The quadrupole enhanced 1H spin-lattice relaxation of the amide proton in slow tumbling proteins.
    Westlund PO
    Phys Chem Chem Phys; 2010 Apr; 12(13):3136-40. PubMed ID: 20237701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins.
    Hartlmüller C; Spreitzer E; Göbl C; Falsone F; Madl T
    J Biomol NMR; 2019 Jul; 73(6-7):305-317. PubMed ID: 31297688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermolecular Paramagnetic Relaxation Enhancement (PRE) Studies of Transient Complexes in Intrinsically Disordered Proteins.
    Janowska MK; Baum J
    Methods Mol Biol; 2016; 1345():45-53. PubMed ID: 26453204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring Solvent Hydrogen Exchange Rates by Multifrequency Excitation
    Yuwen T; Bah A; Brady JP; Ferrage F; Bouvignies G; Kay LE
    J Phys Chem B; 2018 Dec; 122(49):11206-11217. PubMed ID: 30179470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins.
    Srb P; Nováček J; Kadeřávek P; Rabatinová A; Krásný L; Žídková J; Bobálová J; Sklenář V; Žídek L
    J Biomol NMR; 2017 Nov; 69(3):133-146. PubMed ID: 29071460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins.
    Ying J; Roche J; Bax A
    J Magn Reson; 2014 Apr; 241():97-102. PubMed ID: 24360766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clean SEA-HSQC: a method to map solvent exposed amides in large non-deuterated proteins with gradient-enhanced HSQC.
    Lin D; Sze KH; Cui Y; Zhu G
    J Biomol NMR; 2002 Aug; 23(4):317-22. PubMed ID: 12398352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach.
    Ishima R; Torchia DA
    J Biomol NMR; 2003 Mar; 25(3):243-8. PubMed ID: 12652136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heteronuclear transfers from labile protons in biomolecular NMR: Cross polarization, revisited.
    Novakovic M; Jayanthi S; Lupulescu A; Concilio MG; Kim J; Columbus D; Kuprov I; Frydman L
    J Magn Reson; 2021 Dec; 333():107083. PubMed ID: 34688177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of backbone angle psi in proteins using a TROSY-based alpha/beta-HN(CO)CA-J experiment.
    Permi P; Kilpeläinen I; Annila A
    J Magn Reson; 2000 Oct; 146(2):255-9. PubMed ID: 11001841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apparent transverse relaxation rates in systems with scalar-coupled protons.
    Baishya B; Segawa TF; Bodenhausen G
    J Am Chem Soc; 2009 Dec; 131(48):17538-9. PubMed ID: 19950988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates.
    Korzhnev DM; Skrynnikov NR; Millet O; Torchia DA; Kay LE
    J Am Chem Soc; 2002 Sep; 124(36):10743-53. PubMed ID: 12207529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transverse relaxation of scalar-coupled protons.
    Segawa TF; Baishya B; Bodenhausen G
    Chemphyschem; 2010 Oct; 11(15):3343-54. PubMed ID: 20938997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model.
    Heisel KA; Krishnan VV
    Biopolymers; 2014 Jan; 102(1):69-77. PubMed ID: 24037535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.