These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36018512)
1. Classification prediction of early pulmonary nodes based on weighted gene correlation network analysis and machine learning. Li G; Yang M; Ran L; Jin F J Cancer Res Clin Oncol; 2023 Jul; 149(7):3915-3924. PubMed ID: 36018512 [TBL] [Abstract][Full Text] [Related]
2. Identification of cancer stemness and M2 macrophage-associated biomarkers in lung adenocarcinoma. Wang X; Luo X; Wang Z; Wang Y; Zhao J; Bian L Heliyon; 2023 Sep; 9(9):e19114. PubMed ID: 37662825 [TBL] [Abstract][Full Text] [Related]
3. Weighted gene coexpression network analysis identifies hub genes related to KRAS mutant lung adenocarcinoma. Dai D; Shi R; Han S; Jin H; Wang X Medicine (Baltimore); 2020 Aug; 99(32):e21478. PubMed ID: 32769881 [TBL] [Abstract][Full Text] [Related]
4. Prognostic value of CCR2 as an immune indicator in lung adenocarcinoma: A study based on tumor-infiltrating immune cell analysis. Wan Y; Wang X; Liu T; Fan T; Zhang Z; Wang B; Zhang B; Tian Z; Mao T; Gong Z; Zhang L Cancer Med; 2021 Jun; 10(12):4150-4163. PubMed ID: 33949150 [TBL] [Abstract][Full Text] [Related]
5. A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies. Li Y; Ge D; Gu J; Xu F; Zhu Q; Lu C BMC Cancer; 2019 Sep; 19(1):886. PubMed ID: 31488089 [TBL] [Abstract][Full Text] [Related]
6. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma. Yang D; He Y; Wu B; Liu R; Wang N; Wang T; Luo Y; Li Y; Liu Y Cancer Biomark; 2020; 29(3):399-416. PubMed ID: 32741804 [TBL] [Abstract][Full Text] [Related]
7. Screening of novel biomarkers for breast cancer based on WGCNA and multiple machine learning algorithms. Jin X; Huang Z; Guo P; Yuan R Transl Cancer Res; 2023 Jun; 12(6):1466-1489. PubMed ID: 37434679 [TBL] [Abstract][Full Text] [Related]
8. Machine learning algorithms assisted identification of post-stroke depression associated biological features. Zhang X; Wang X; Wang S; Zhang Y; Wang Z; Yang Q; Wang S; Cao R; Yu B; Zheng Y; Dang Y Front Neurosci; 2023; 17():1146620. PubMed ID: 36968495 [TBL] [Abstract][Full Text] [Related]
9. A novel ferroptosis-related genes model for prognosis prediction of lung adenocarcinoma. Li F; Ge D; Sun SL BMC Pulm Med; 2021 Jul; 21(1):229. PubMed ID: 34256754 [TBL] [Abstract][Full Text] [Related]
10. Screening key lncRNAs for human lung adenocarcinoma based on machine learning and weighted gene co-expression network analysis. Wang Y; Fu J; Wang Z; Lv Z; Fan Z; Lei T Cancer Biomark; 2019; 25(4):313-324. PubMed ID: 31322548 [TBL] [Abstract][Full Text] [Related]
11. A Recurrence-Specific Gene-Based Prognosis Prediction Model for Lung Adenocarcinoma through Machine Learning Algorithm. Xu S; Zhou J; Liu K; Chen Z; He Z Biomed Res Int; 2020; 2020():9124792. PubMed ID: 33224985 [TBL] [Abstract][Full Text] [Related]
12. Subclassification of lung adenocarcinoma through comprehensive multi-omics data to benefit survival outcomes. Wei J; Wang X; Guo H; Zhang L; Shi Y; Wang X Comput Biol Chem; 2024 Oct; 112():108150. PubMed ID: 39018587 [TBL] [Abstract][Full Text] [Related]
13. The role of radiotherapy-related autophagy genes in the prognosis and immune infiltration in lung adenocarcinoma. Gao J; Lu F; Yan J; Wang R; Xia Y; Wang L; Li L; Chang L; Li W Front Immunol; 2022; 13():992626. PubMed ID: 36311724 [TBL] [Abstract][Full Text] [Related]
14. Identification of potential biomarkers in the peripheral blood of neonates with bronchopulmonary dysplasia using WGCNA and machine learning algorithms. Luo L; Luo F; Wu C; Zhang H; Jiang Q; He S; Li W; Zhang W; Cheng Y; Yang P; Li Z; Li M; Bao Y; Jiang F Medicine (Baltimore); 2024 Jan; 103(4):e37083. PubMed ID: 38277517 [TBL] [Abstract][Full Text] [Related]
15. Construction and validation of a prognostic model for lung adenocarcinoma based on endoplasmic reticulum stress-related genes. Li F; Niu Y; Zhao W; Yan C; Qi Y Sci Rep; 2022 Nov; 12(1):19857. PubMed ID: 36400857 [TBL] [Abstract][Full Text] [Related]
16. Identification of key genes for IgA nephropathy based on machine learning algorithm and correlation analysis of immune cells. Chen S; Li Y; Wang G; Song L; Tan J; Yang F Transpl Immunol; 2023 Jun; 78():101824. PubMed ID: 36948405 [TBL] [Abstract][Full Text] [Related]
17. A Machine-Learning Approach to Developing a Predictive Signature Based on Transcriptome Profiling of Ground-Glass Opacities for Accurate Classification and Exploring the Immune Microenvironment of Early-Stage LUAD. Zhao Z; Yin W; Peng X; Cai Q; He B; Shi S; Peng W; Tu G; Li Y; Li D; Tao Y; Peng M; Wang X; Yu F Front Immunol; 2022; 13():872387. PubMed ID: 35693786 [TBL] [Abstract][Full Text] [Related]
18. Screening of potential biomarkers in peripheral blood of patients with depression based on weighted gene co-expression network analysis and machine learning algorithms. Wang Z; Meng Z; Chen C Front Psychiatry; 2022; 13():1009911. PubMed ID: 36325528 [TBL] [Abstract][Full Text] [Related]
19. Bioinformatic analysis of underlying mechanisms of Kawasaki disease via Weighted Gene Correlation Network Analysis (WGCNA) and the Least Absolute Shrinkage and Selection Operator method (LASSO) regression model. Xie Y; Shi H; Han B BMC Pediatr; 2023 Feb; 23(1):90. PubMed ID: 36829193 [TBL] [Abstract][Full Text] [Related]
20. Identification of a Four-Gene Signature Associated with the Prognosis Prediction of Lung Adenocarcinoma Based on Integrated Bioinformatics Analysis. Wu Y; Yang L; Zhang L; Zheng X; Xu H; Wang K; Weng X Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]