These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36018668)

  • 1. Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations.
    Böhme M; Moldabekov ZA; Vorberger J; Dornheim T
    Phys Rev Lett; 2022 Aug; 129(6):066402. PubMed ID: 36018668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter.
    Dornheim T; Groth S; Vorberger J; Bonitz M
    Phys Rev Lett; 2018 Dec; 121(25):255001. PubMed ID: 30608805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Static Exchange-Correlation Kernel across Jacob's Ladder without Functional Derivatives.
    Moldabekov Z; Böhme M; Vorberger J; Blaschke D; Dornheim T
    J Chem Theory Comput; 2023 Feb; 19(4):1286-1299. PubMed ID: 36724889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions.
    Böhme M; Moldabekov ZA; Vorberger J; Dornheim T
    Phys Rev E; 2023 Jan; 107(1-2):015206. PubMed ID: 36797933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation.
    Dornheim T; Vorberger J; Groth S; Hoffmann N; Moldabekov ZA; Bonitz M
    J Chem Phys; 2019 Nov; 151(19):194104. PubMed ID: 31757143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bound-State Breaking and the Importance of Thermal Exchange-Correlation Effects in Warm Dense Hydrogen.
    Moldabekov Z; Schwalbe S; Böhme MP; Vorberger J; Shao X; Pavanello M; Graziani FR; Dornheim T
    J Chem Theory Comput; 2024 Jan; 20(1):68-78. PubMed ID: 38133546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic density response of warm dense hydrogen on the nanoscale.
    Dornheim T; Böhme MP; Moldabekov ZA; Vorberger J
    Phys Rev E; 2023 Sep; 108(3-2):035204. PubMed ID: 37849144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties.
    Dornheim T; Schwalbe S; Böhme MP; Moldabekov ZA; Vorberger J; Tolias P
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas.
    Dornheim T; Groth S; Vorberger J; Bonitz M
    Phys Rev E; 2017 Aug; 96(2-1):023203. PubMed ID: 28950530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Electronic Density Response in Warm Dense Matter.
    Dornheim T; Vorberger J; Bonitz M
    Phys Rev Lett; 2020 Aug; 125(8):085001. PubMed ID: 32909774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas.
    Dornheim T; Moldabekov ZA; Vorberger J
    J Chem Phys; 2021 Aug; 155(5):054110. PubMed ID: 34364322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the accuracy of hybrid exchange-correlation functionals for the density response of warm dense electrons.
    Moldabekov ZA; Lokamani M; Vorberger J; Cangi A; Dornheim T
    J Chem Phys; 2023 Mar; 158(9):094105. PubMed ID: 36889956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas.
    Driver KP; Militzer B
    Phys Rev Lett; 2012 Mar; 108(11):115502. PubMed ID: 22540485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas.
    Groth S; Dornheim T; Bonitz M
    J Chem Phys; 2017 Oct; 147(16):164108. PubMed ID: 29096453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relevance of electronic perturbations in the warm dense electron gas.
    Moldabekov Z; Dornheim T; Böhme M; Vorberger J; Cangi A
    J Chem Phys; 2021 Sep; 155(12):124116. PubMed ID: 34598570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations.
    Dornheim T; Vorberger J; Moldabekov ZA; Böhme M
    Philos Trans A Math Phys Eng Sci; 2023 Aug; 381(2253):20220217. PubMed ID: 37393936
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Dornheim T; Schwalbe S; Moldabekov ZA; Vorberger J; Tolias P
    J Phys Chem Lett; 2024 Feb; 15(5):1305-1313. PubMed ID: 38285536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of finite-temperature exchange correlation for warm dense matter calculations.
    Karasiev VV; Calderín L; Trickey SB
    Phys Rev E; 2016 Jun; 93(6):063207. PubMed ID: 27415377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations.
    Dornheim T; Vorberger J
    Phys Rev E; 2020 Dec; 102(6-1):063301. PubMed ID: 33466040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions.
    Karasiev VV; Dufty JW; Trickey SB
    Phys Rev Lett; 2018 Feb; 120(7):076401. PubMed ID: 29542959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.