These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36026464)

  • 1. Modeling the Power-Duration Relationship in Professional Cyclists During the Giro d'Italia.
    Vinetti G; Pollastri L; Lanfranconi F; Bruseghini P; Taboni A; Ferretti G
    J Strength Cond Res; 2023 Apr; 37(4):866-871. PubMed ID: 36026464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do world class top 5 Giro d'Italia finishers train? A qualitative multiple case study.
    Gallo G; Mateo-March M; Gotti D; Faelli E; Ruggeri P; Codella R; Filipas L
    Scand J Med Sci Sports; 2022 Dec; 32(12):1738-1746. PubMed ID: 35686390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Day-by-Day Periodization Strategies of a Giro d'Italia Podium Finisher.
    Gallo G; Mateo-March M; Fuk A; Faelli E; Ruggeri P; Codella R; Filipas L
    Int J Sports Physiol Perform; 2024 May; 19(5):505-509. PubMed ID: 38335950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body Water Status and Short-term Maximal Power Output during a Multistage Road Bicycle Race (Giro d'Italia 2014).
    Pollastri L; Lanfranconi F; Tredici G; Burtscher M; Gatterer H
    Int J Sports Med; 2016 Apr; 37(4):329-33. PubMed ID: 26701829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycling power output produced during flat and mountain stages in the Giro d'Italia: a case study.
    Vogt S; Schumacher YO; Blum A; Roecker K; Dickhuth HH; Schmid A; Heinrich L
    J Sports Sci; 2007 Oct; 25(12):1299-305. PubMed ID: 17786683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body fluid status and physical demand during the Giro d'Italia.
    Pollastri L; Lanfranconi F; Tredici G; Schenk K; Burtscher M; Gatterer H
    Res Sports Med; 2016; 24(1):30-8. PubMed ID: 26942840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time to exhaustion during cycling is not well predicted by critical power calculations.
    Pallarés JG; Lillo-Bevia JR; Morán-Navarro R; Cerezuela-Espejo V; Mora-Rodriguez R
    Appl Physiol Nutr Metab; 2020 Jul; 45(7):753-760. PubMed ID: 31935109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y; Miura A; Endo M; Kan A; Yanagawa K; Whipp BJ
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of the 3-Minute All-Out Exercise Test on the CompuTrainer.
    Clark IE; Gartner HE; Williams JL; Pettitt RW
    J Strength Cond Res; 2016 Mar; 30(3):825-9. PubMed ID: 26340469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Road cycle TT performance: Relationship to the power-duration model and association with FTP.
    Morgan PT; Black MI; Bailey SJ; Jones AM; Vanhatalo A
    J Sports Sci; 2019 Apr; 37(8):902-910. PubMed ID: 30387374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved methodology for estimating critical power from mean maximal power output data.
    Spragg J; Leo P; Swart J
    J Sports Sci; 2023 Jun; 41(10):964-971. PubMed ID: 37660315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-pacing increases critical power and improves performance during severe-intensity exercise.
    Black MI; Jones AM; Bailey SJ; Vanhatalo A
    Appl Physiol Nutr Metab; 2015 Jul; 40(7):662-70. PubMed ID: 26088158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.
    Muniz-Pumares D; Pedlar C; Godfrey R; Glaister M
    J Sports Sci; 2017 Dec; 35(23):2357-2364. PubMed ID: 28019724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The power profile predicts road cycling MMP.
    Quod MJ; Martin DT; Martin JC; Laursen PB
    Int J Sports Med; 2010 Jun; 31(6):397-401. PubMed ID: 20301046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J; de Souza KM; de Lucas RD; Guglielmo LG; Greco CC; Denadai BS
    PLoS One; 2015; 10(9):e0138428. PubMed ID: 26407169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.