BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36026505)

  • 1. RAFFT: Efficient prediction of RNA folding pathways using the fast Fourier transform.
    Opuu V; Merleau NSC; Messow V; Smerlak M
    PLoS Comput Biol; 2022 Aug; 18(8):e1010448. PubMed ID: 36026505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting folding pathways between RNA conformational structures guided by RNA stacks.
    Li Y; Zhang S
    BMC Bioinformatics; 2012 Mar; 13 Suppl 3(Suppl 3):S5. PubMed ID: 22536903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DrTransformer: heuristic cotranscriptional RNA folding using the nearest neighbor energy model.
    Badelt S; Lorenz R; Hofacker IL
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the fast fourier transform to accelerate the computational search for RNA conformational switches.
    Senter E; Sheikh S; Dotu I; Ponty Y; Clote P
    PLoS One; 2012; 7(12):e50506. PubMed ID: 23284639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction.
    Washietl S; Hofacker IL; Stadler PF; Kellis M
    Nucleic Acids Res; 2012 May; 40(10):4261-72. PubMed ID: 22287623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ant colony optimization for predicting RNA folding pathways.
    Takitou S; Taneda A
    Comput Biol Chem; 2019 Dec; 83():107118. PubMed ID: 31698162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base-pair ambiguity and the kinetics of RNA folding.
    Zhou G; Loper J; Geman S
    BMC Bioinformatics; 2019 Dec; 20(1):666. PubMed ID: 31830902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures.
    Scheid A; Nebel ME
    BMC Bioinformatics; 2012 Jul; 13():159. PubMed ID: 22776037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cotranscriptional folding kinetics of ribonucleic acid secondary structures.
    Zhao P; Zhang W; Chen SJ
    J Chem Phys; 2011 Dec; 135(24):245101. PubMed ID: 22225186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer uncrossing and knotting in protein folding, and their role in minimal folding pathways.
    Mohazab AR; Plotkin SS
    PLoS One; 2013; 8(1):e53642. PubMed ID: 23365638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and approaches to predicting RNA with multiple functional structures.
    Schroeder SJ
    RNA; 2018 Dec; 24(12):1615-1624. PubMed ID: 30143552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotranscriptional Kinetic Folding of RNA Secondary Structures Including Pseudoknots.
    Thanh VH; Korpela D; Orponen P
    J Comput Biol; 2021 Sep; 28(9):892-908. PubMed ID: 33902324
    [No Abstract]   [Full Text] [Related]  

  • 13. Multicore and GPU algorithms for Nussinov RNA folding.
    Li J; Ranka S; Sahni S
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S1. PubMed ID: 25082539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.
    Li J; Xu C; Wang L; Liang H; Feng W; Cai Z; Wang Y; Cong W; Liu Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1643001. PubMed ID: 27045556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discretized torsional dynamics and the folding of an RNA chain.
    Fernández A; Salthú R; Cendra H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2105-19. PubMed ID: 11970003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction.
    Janssen S; Schudoma C; Steger G; Giegerich R
    BMC Bioinformatics; 2011 Nov; 12():429. PubMed ID: 22051375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures.
    Bleckley S; Stone JW; Schroeder SJ
    PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus folding of unaligned RNA sequences revisited.
    Bafna V; Tang H; Zhang S
    J Comput Biol; 2006 Mar; 13(2):283-95. PubMed ID: 16597240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limits in accuracy and a strategy of RNA structure prediction using experimental information.
    Wang J; Williams B; Chirasani VR; Krokhotin A; Das R; Dokholyan NV
    Nucleic Acids Res; 2019 Jun; 47(11):5563-5572. PubMed ID: 31106330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.