These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36027761)

  • 21. Characterization of the piezoresistance in highly doped p-type 3C-SiC at cryogenic temperatures.
    Phan HP; Dowling KM; Nguyen TK; Chapin CA; Dinh T; Miller RA; Han J; Iacopi A; Senesky DG; Dao DV; Nguyen NT
    RSC Adv; 2018 Aug; 8(52):29976-29979. PubMed ID: 35547286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perovskite Core-Shell Nanowire Transistors: Interfacial Transfer Doping and Surface Passivation.
    Meng Y; Lai Z; Li F; Wang W; Yip S; Quan Q; Bu X; Wang F; Bao Y; Hosomi T; Takahashi T; Nagashima K; Yanagida T; Lu J; Ho JC
    ACS Nano; 2020 Oct; 14(10):12749-12760. PubMed ID: 32910641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors.
    Nguyen BM; Taur Y; Picraux ST; Dayeh SA
    Nano Lett; 2014 Feb; 14(2):585-91. PubMed ID: 24382113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extended vapor-liquid-solid growth of silicon carbide nanowires.
    Rajesh JA; Pandurangan A
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2741-51. PubMed ID: 24734687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide.
    Beygi M; Bentley JT; Frewin CL; Kuliasha CA; Takshi A; Bernardin EK; La Via F; Saddow SE
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31261887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pushing the Limits of Piezoresistive Effect by Optomechanical Coupling in 3C-SiC/Si Heterostructure.
    Md Foisal AR; Qamar A; Phan HP; Dinh T; Tuan KN; Tanner P; Streed EW; Dao DV
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39921-39925. PubMed ID: 29098850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Al
    Schilirò E; Fiorenza P; Lo Nigro R; Galizia B; Greco G; Di Franco S; Bongiorno C; La Via F; Giannazzo F; Roccaforte F
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A silicon carbide nanowire field effect transistor for DNA detection.
    Fradetal L; Bano E; Attolini G; Rossi F; Stambouli V
    Nanotechnology; 2016 Jun; 27(23):235501. PubMed ID: 27120971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation.
    Liang C; Wang Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40690-40696. PubMed ID: 29088527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low voltage nanoelectromechanical switches based on silicon carbide nanowires.
    Feng XL; Matheny MH; Zorman CA; Mehregany M; Roukes ML
    Nano Lett; 2010 Aug; 10(8):2891-6. PubMed ID: 20698601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of confinement on carrier transport in Ge-Si(x)Ge(1-x) core-shell nanowires.
    Nah J; Dillen DC; Varahramyan KM; Banerjee SK; Tutuc E
    Nano Lett; 2012 Jan; 12(1):108-12. PubMed ID: 22111925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study.
    Aral G; Islam MM; van Duin ACT
    Phys Chem Chem Phys; 2017 Dec; 20(1):284-298. PubMed ID: 29205239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope.
    Lee JH; Kim BS; Choi SH; Jang Y; Hwang SW; Whang D
    Nanoscale; 2013 Oct; 5(19):8968-72. PubMed ID: 23969942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon-Induced Heterointerface Thinning for Schottky Barrier Modification of Core/Shell SiC/SiO
    Xing S; Lin L; Huo J; Zou G; Sheng X; Liu L; Zhou YN
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9326-9332. PubMed ID: 30757894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Selective Photocatalytic CO
    Li H; Sun J
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5073-5078. PubMed ID: 33480244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.
    Phan HP; Dinh T; Kozeki T; Qamar A; Namazu T; Dimitrijev S; Nguyen NT; Dao DV
    Sci Rep; 2016 Jun; 6():28499. PubMed ID: 27349378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun p-Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors.
    Liu A; Meng Y; Zhu H; Noh YY; Liu G; Shan F
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25841-25849. PubMed ID: 28937205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires.
    Zhang X; Jevasuwan W; Sugimoto Y; Fukata N
    ACS Nano; 2019 Nov; 13(11):13403-13412. PubMed ID: 31626528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct growth of core-shell SiC-SiO(2) nanowires and field emission characteristics.
    Ryu Y; Tak Y; Yong K
    Nanotechnology; 2005 Jul; 16(7):S370-4. PubMed ID: 21727454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field-effect modulation of thermoelectric properties in multigated silicon nanowires.
    Curtin BM; Codecido EA; Krämer S; Bowers JE
    Nano Lett; 2013; 13(11):5503-8. PubMed ID: 24138582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.