These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 36028045)
1. Bortezomib prodrug catalytic nanoreactor for chemo/chemodynamic therapy and macrophage re-education. Huang Y; Guan Z; Ren L; Luo Y; Chen M; Sun Y; He Y; Zeng Z; Dai X; Jiang J; Huang Z; Zhao C J Control Release; 2022 Oct; 350():332-349. PubMed ID: 36028045 [TBL] [Abstract][Full Text] [Related]
2. Ferrocene-containing polymersome nanoreactors for synergistically amplified tumor-specific chemodynamic therapy. Wang Y; Zhang S; Wang J; Zhou Q; Mukerabigwi JF; Ke W; Lu N; Ge Z J Control Release; 2021 May; 333():500-510. PubMed ID: 33848558 [TBL] [Abstract][Full Text] [Related]
3. A tumor pH-responsive autocatalytic nanoreactor as a H Liu F; He T; Gong S; Shen M; Ma S; Huang X; Li L; Wang L; Wu Q; Gong C Acta Biomater; 2022 Dec; 154():510-522. PubMed ID: 36241016 [TBL] [Abstract][Full Text] [Related]
4. H Xiao Z; Zuo W; Chen L; Wu L; Liu N; Liu J; Jin Q; Zhao Y; Zhu X ACS Appl Mater Interfaces; 2021 Sep; 13(37):43925-43936. PubMed ID: 34499485 [TBL] [Abstract][Full Text] [Related]
5. Tumor microenvironment-activated Nb Zhang Y; Li M; Zhang X; Zhang P; Liu Z; Feng M; Ren G; Liu J Colloids Surf B Biointerfaces; 2023 Jan; 221():113005. PubMed ID: 36375291 [TBL] [Abstract][Full Text] [Related]
6. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Gu Z; Wang X; Cheng R; Cheng L; Zhong Z Acta Biomater; 2018 Oct; 80():288-295. PubMed ID: 30240956 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable hollow mesoporous bimetallic nanoreactors to boost chemodynamic therapy. Shi Y; Chang L; Pan C; Zhang H; Yang Y; Wu A; Zeng L J Colloid Interface Sci; 2024 Feb; 656():93-103. PubMed ID: 37984174 [TBL] [Abstract][Full Text] [Related]
8. Promoting Oxidative Stress in Cancer Starvation Therapy by Site-Specific Startup of Hyaluronic Acid-Enveloped Dual-Catalytic Nanoreactors. Yao Z; Zhang B; Liang T; Ding J; Min Q; Zhu JJ ACS Appl Mater Interfaces; 2019 May; 11(21):18995-19005. PubMed ID: 31058483 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Copper Peroxide Nanodots for H Lin LS; Huang T; Song J; Ou XY; Wang Z; Deng H; Tian R; Liu Y; Wang JF; Liu Y; Yu G; Zhou Z; Wang S; Niu G; Yang HH; Chen X J Am Chem Soc; 2019 Jun; 141(25):9937-9945. PubMed ID: 31199131 [TBL] [Abstract][Full Text] [Related]
10. A self-amplified nanocatalytic system for achieving "1 + 1 + 1 > 3" chemodynamic therapy on triple negative breast cancer. Zhou L; Chen J; Sun Y; Chai K; Zhu Z; Wang C; Chen M; Han W; Hu X; Li R; Yao T; Li H; Dong C; Shi S J Nanobiotechnology; 2021 Sep; 19(1):261. PubMed ID: 34481495 [TBL] [Abstract][Full Text] [Related]
11. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H Zhu XY; Wang TY; Jia HR; Wu SY; Gao CZ; Li YH; Zhang X; Shan BH; Wu FG J Control Release; 2024 Mar; 367():892-904. PubMed ID: 38278369 [TBL] [Abstract][Full Text] [Related]
12. Dual-responsive and NIR-driven free radical nanoamplifier with glutathione depletion for enhanced tumor-specific photothermal/thermodynamic/chemodynamic synergistic Therapy. Chen F; Zhang X; Wang Z; Xu C; Hu J; Liu L; Zhou J; Sun B Biomater Sci; 2022 Oct; 10(20):5912-5924. PubMed ID: 36040793 [TBL] [Abstract][Full Text] [Related]
13. A dual-catalytic nanoreactor for synergistic chemodynamic-starvation therapy toward tumor metastasis suppression. Zhang H; Lu F; Pan W; Ge Y; Cui B; Gong S; Li N; Tang B Biomater Sci; 2021 May; 9(10):3814-3820. PubMed ID: 33881052 [TBL] [Abstract][Full Text] [Related]
14. A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy. Wu H; Chen F; Gu D; You C; Sun B Nanoscale; 2020 Sep; 12(33):17319-17331. PubMed ID: 32789333 [TBL] [Abstract][Full Text] [Related]
15. Pd@Pt-GOx/HA as a Novel Enzymatic Cascade Nanoreactor for High-Efficiency Starving-Enhanced Chemodynamic Cancer Therapy. Ming J; Zhu T; Yang W; Shi Y; Huang D; Li J; Xiang S; Wang J; Chen X; Zheng N ACS Appl Mater Interfaces; 2020 Nov; 12(46):51249-51262. PubMed ID: 33161703 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria-mediated self-cycling nanoreactor enabling uninterrupted oxidative damage for enhanced chemodynamic therapy. Wu S; Wang H; Wei Y; Kang L; Cui T; Huang Y; Liu Z; Pu F; Ren J Colloids Surf B Biointerfaces; 2024 Aug; 240():113990. PubMed ID: 38810468 [TBL] [Abstract][Full Text] [Related]
17. Supramolecular Self-Assemblies with Self-Supplying H Bai Y; Shang Q; Wu J; Zhang H; Liu C; Liu K ACS Appl Mater Interfaces; 2022 Aug; 14(33):37424-37435. PubMed ID: 35947436 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional Fe-based coordination polymer nano-bomb modified with β-lapachone and CaO Zhao P; Gong L; Chang L; Du H; Geng M; Meng S; Dai L J Nanobiotechnology; 2024 Jan; 22(1):3. PubMed ID: 38166978 [TBL] [Abstract][Full Text] [Related]
19. Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy. Chen Q; Zhou J; Chen Z; Luo Q; Xu J; Song G ACS Appl Mater Interfaces; 2019 Aug; 11(34):30551-30565. PubMed ID: 31397998 [TBL] [Abstract][Full Text] [Related]
20. Tumor microenvironment (TME)-modulating nanoreactor for multiply enhanced chemodynamic therapy synergized with chemotherapy, starvation, and photothermal therapy. Hao S; Zuo J; Huang H; Li W; Guo H; Liu M; Zhu H; Sun H J Mater Chem B; 2023 Feb; 11(8):1739-1748. PubMed ID: 36723374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]