These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36028126)

  • 1. Biodesalination using halophytic cyanobacterium Phormidium keutzingianum from brackish to the hypersaline water.
    Zafar AM; Javed MA; Aly Hassan A; Sahle-Demessie E; Harmon S
    Chemosphere; 2022 Nov; 307(Pt 4):136082. PubMed ID: 36028126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unprecedented biodesalination rates-Shortcomings of electrical conductivity measurements in determining salt removal by algae and cyanobacteria.
    Zafar AM; Javed MA; Aly Hassan A
    J Environ Manage; 2022 Jan; 302(Pt A):113947. PubMed ID: 34678537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seawater biodesalination treatment using Phormidium keutzingianum in attached growth-packed bed continuous flow stirred tank reactor.
    Zafar AM; Aly Hassan A
    Environ Res; 2023 Nov; 236(Pt 2):116784. PubMed ID: 37517498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremoval capacity of Co
    Abdel-Raouf N; Sholkamy EN; Bukhari N; Al-Enazi NM; Alsamhary KI; Al-Khiat SHA; Ibraheem IBM
    Environ Res; 2022 Mar; 204(Pt B):111630. PubMed ID: 34224707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective biosorption of phenol by the thermophilic cyanobacterium Phormidium sp.
    Karatay SE; Dönmez G; Aksu Z
    Water Sci Technol; 2017 Dec; 76(11-12):3190-3194. PubMed ID: 29235997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques.
    Michalak I; Mironiuk M; Marycz K
    PLoS One; 2018; 13(10):e0205590. PubMed ID: 30321205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources.
    Hanif M; Munir N; Abideen Z; Dias DA; Hessini K; El-Keblawy A
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118830-118854. PubMed ID: 37922085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Changes of
    Krishna Kanamarlapudi SLR; Muddada S
    Pol J Microbiol; 2019 Dec; 68(4):549-558. PubMed ID: 31880898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biosorption and Biomineralization of Uranium(VI) from Aqueous Solutions by Landoltia Punctata].
    Nie XQ; Dong FQ; Liu N; Zhang D; Liu MX; Yang J; Zhang W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2613-9. PubMed ID: 26669177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing La(III) biosorption and biomineralization with Micromonospora saelicesensis: Involvement of phosphorus and formation of monazite nano-minerals.
    Zhang Y; Wang L; Liu X; Cao C; Yao J; Ma Z; Shen Q; Chen Q; Liu J; Li R; Jiang J
    Sci Total Environ; 2024 Mar; 914():169851. PubMed ID: 38185165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-modified granular attapulgite removed phosphorus from synthetic wastewater containing low-strength phosphorus.
    Lv N; Li X; Qi X; Ren Y
    Chemosphere; 2022 Jun; 296():133898. PubMed ID: 35134405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Appraising the phycoremediation potential of cyanobacterial strains Phormidium and Oscillatoria for nutrient removal from textile wastewater (TWW) and synchronized biodiesel production from TWW-tolerant biomass.
    Mathimani T; Alshiekheid MA; Sabour A; Le T; Xia C
    Environ Res; 2024 Jan; 241():117628. PubMed ID: 37956756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs.
    Zhang H; Elskens M; Chen G; Chou L
    Chemosphere; 2019 Jun; 225():352-359. PubMed ID: 30884296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism.
    Jin Y; Wang X; Zang T; Hu Y; Hu X; Ren G; Xu X; Qu J
    J Microbiol Biotechnol; 2016 Aug; 26(8):1428-38. PubMed ID: 27197671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.
    Jones BO; John OO; Luke C; Ochieng A; Bassey BJ
    J Environ Manage; 2016 Jul; 177():365-72. PubMed ID: 27150318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of cadmium and nickel biosorption by Pseudomonas sp. via response surface methodology.
    Hosseini Zabet A; Ahmady-Asbchin S
    World J Microbiol Biotechnol; 2023 Mar; 39(5):135. PubMed ID: 36961587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability.
    Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C
    J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium ion removal at different sodium chloride concentrations by free and immobilized halophilic bacteria.
    Yan H; Cao J; Teng M; Meng L; Zhao L; Chi X; Han Z; Tucker ME; Zhao H
    Water Res; 2023 Feb; 229():119438. PubMed ID: 36470047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of hexavalent chromium and molybdenum ions using extremophilic cyanobacterial mats: efficiency, isothermal, and kinetic studies.
    Al-Qahtani KM; Abd Elkarim MS; Al-Fawzan FF; Al-Afify ADG; Ali MHH
    Int J Phytoremediation; 2024; 26(2):228-240. PubMed ID: 37431240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of U(VI) and mechanisms by live and dead cells of Sphingopyxis sp. YF1.
    Chen X; Cai S; Zhang N; Yang J; Peng T; Yang F
    Environ Sci Pollut Res Int; 2023 Oct; 30(50):109469-109480. PubMed ID: 37924175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.