These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36028127)

  • 21. Breakdown of plastics and polymers by microorganisms.
    Kawai F
    Adv Biochem Eng Biotechnol; 1995; 52():151-94. PubMed ID: 7484358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities.
    Zafar U; Nzerem P; Langarica-Fuentes A; Houlden A; Heyworth A; Saiani A; Robson GD
    Bioresour Technol; 2014 Apr; 158():374-7. PubMed ID: 24656620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solving the plastic dilemma: the fungal and bacterial biodegradability of polyurethanes.
    Bhavsar P; Bhave M; Webb HK
    World J Microbiol Biotechnol; 2023 Mar; 39(5):122. PubMed ID: 36929307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome.
    Liu J; Liu J; Xu B; Xu A; Cao S; Wei R; Zhou J; Jiang M; Dong W
    Chemosphere; 2022 Oct; 304():135263. PubMed ID: 35697110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.
    Cregut M; Bedas M; Durand MJ; Thouand G
    Biotechnol Adv; 2013 Dec; 31(8):1634-47. PubMed ID: 23978675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of two diphenyl polyenes as acid-sensitive additives during the biodegradation of a thermoset polyester polyurethane coating.
    Shesham V; Kelly AL; Burke W; Crouch A; Drake CA; Varaljay VA; Crookes-Goodson WJ; Barlow DE; Masthay MB; Biffinger JC
    J Appl Microbiol; 2022 Jan; 132(1):351-364. PubMed ID: 34297452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of phospholipids on the biodegradation of polyurethanes by lysosomal enzymes.
    Labow RS; Santerre JP; Waghray G
    J Biomater Sci Polym Ed; 1997; 8(10):779-95. PubMed ID: 9297603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Starch-based isocyanate- and non-isocyanate polyurethane hybrids: A review on synthesis, performance and biodegradation.
    Tai NL; Ghasemlou M; Adhikari R; Adhikari B
    Carbohydr Polym; 2021 Aug; 265():118029. PubMed ID: 33966823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of plastics.
    Shimao M
    Curr Opin Biotechnol; 2001 Jun; 12(3):242-7. PubMed ID: 11404101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes.
    Knight PT; Kirk JT; Anderson JM; Mather PT
    J Biomed Mater Res A; 2010 Aug; 94(2):333-43. PubMed ID: 20583334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatible and biodegradable polyurethane polymers.
    Pavlova M; Draganova M
    Biomaterials; 1993 Oct; 14(13):1024-9. PubMed ID: 8286669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective multi-stage biodegradation of commercial bulk polyurethane by Clonostachys and Purpureocillium spp.
    Bhavsar P; Bhave M; Webb HK
    Sci Total Environ; 2024 Jan; 908():168329. PubMed ID: 37926262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic basis for the biodegradation of a polyether-polyurethane-acrylic copolymer by a landfill microbial community inferred by metagenomic deconvolution analysis.
    Sánchez-Reyes A; Gaytán I; Pulido-García J; Burelo M; Vargas-Suárez M; Cruz-Gómez MJ; Loza-Tavera H
    Sci Total Environ; 2023 Jul; 881():163367. PubMed ID: 37044345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of biological degradation of polyurethanes.
    Magnin A; Pollet E; Phalip V; Avérous L
    Biotechnol Adv; 2020; 39():107457. PubMed ID: 31689471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    Biomaterials; 1997 Jan; 18(1):37-45. PubMed ID: 9003895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urethanases for the Enzymatic Hydrolysis of Low Molecular Weight Carbamates and the Recycling of Polyurethanes.
    Branson Y; Söltl S; Buchmann C; Wei R; Schaffert L; Badenhorst CPS; Reisky L; Jäger G; Bornscheuer UT
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216220. PubMed ID: 36591907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase.
    Santerre JP; Labow RS
    J Biomed Mater Res; 1997 Aug; 36(2):223-32. PubMed ID: 9261684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.