These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 36028200)
1. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Huang H; Li G; Jia Q; Bian D; Guan S; Kulyasova O; Valiev RZ; Rau JV; Zheng Y Acta Biomater; 2022 Oct; 152():1-18. PubMed ID: 36028200 [TBL] [Abstract][Full Text] [Related]
2. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications. Xu Y; Wang W; Yu F; Yang S; Yuan Y; Wang Y Acta Biomater; 2023 Apr; 161():309-323. PubMed ID: 36858165 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties, corrosion behavior, and in vitro and in vivo biocompatibility of hot-extruded Zn-5RE (RE = Y, Ho, and Er) alloys for biodegradable bone-fixation applications. Tong X; Miao D; Zhou R; Shen X; Luo P; Ma J; Li Y; Lin J; Wen C; Sun X Acta Biomater; 2024 Sep; 185():55-72. PubMed ID: 38997078 [TBL] [Abstract][Full Text] [Related]
4. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting. Mostaed E; Sikora-Jasinska M; Ardakani MS; Mostaed A; Reaney IM; Goldman J; Drelich JW Acta Biomater; 2020 Mar; 105():319-335. PubMed ID: 31982587 [TBL] [Abstract][Full Text] [Related]
5. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378 [TBL] [Abstract][Full Text] [Related]
6. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Li G; Yang H; Zheng Y; Chen XH; Yang JA; Zhu D; Ruan L; Takashima K Acta Biomater; 2019 Oct; 97():23-45. PubMed ID: 31349057 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior. Jiang J; Huang H; Niu J; Zhu D; Yuan G Acta Biomater; 2022 Oct; 151():647-660. PubMed ID: 35917908 [TBL] [Abstract][Full Text] [Related]
8. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Zhao D; Han C; Peng B; Cheng T; Fan J; Yang L; Chen L; Wei Q Acta Biomater; 2022 Nov; 153():614-629. PubMed ID: 36162767 [TBL] [Abstract][Full Text] [Related]
9. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Kiani F; Wen C; Li Y Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312 [TBL] [Abstract][Full Text] [Related]
10. Effect of strain on degradation behaviors of WE43, Fe and Zn wires. Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties, corrosion and degradation behaviors, and in vitro cytocompatibility of a biodegradable Zn-5La alloy for bone-implant applications. Tong X; Han Y; Zhou R; Zeng J; Wang C; Yuan Y; Zhu L; Huang S; Ma J; Li Y; Wen C; Lin J Acta Biomater; 2023 Oct; 169():641-660. PubMed ID: 37541605 [TBL] [Abstract][Full Text] [Related]
12. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Yang H; Jia B; Zhang Z; Qu X; Li G; Lin W; Zhu D; Dai K; Zheng Y Nat Commun; 2020 Jan; 11(1):401. PubMed ID: 31964879 [TBL] [Abstract][Full Text] [Related]
13. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837 [TBL] [Abstract][Full Text] [Related]
14. A biodegradable in situ Zn-Mg Tong X; Wang H; Zhu L; Han Y; Wang K; Li Y; Ma J; Lin J; Wen C; Huang S Acta Biomater; 2022 Jul; 146():478-494. PubMed ID: 35580830 [TBL] [Abstract][Full Text] [Related]
15. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable Zn-Dy binary alloys with high strength, ductility, cytocompatibility, and antibacterial ability for bone-implant applications. Tong X; Han Y; Zhou R; Jiang W; Zhu L; Li Y; Huang S; Ma J; Wen C; Lin J Acta Biomater; 2023 Jan; 155():684-702. PubMed ID: 36328128 [TBL] [Abstract][Full Text] [Related]
17. Experimental study on novel biodegradable Zn-Fe-Si alloys. Zeng Y; Guan Z; Linsley CS; Pan S; Liu J; Wu BM; Li X J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2266-2275. PubMed ID: 35522226 [TBL] [Abstract][Full Text] [Related]
18. Tunability of mechanical and biodegradation properties of zinc-based biomaterial with calcium Micronutrient alloying. Akinwekomi AD; Akhtar F J Mech Behav Biomed Mater; 2023 Apr; 140():105724. PubMed ID: 36841123 [TBL] [Abstract][Full Text] [Related]
19. Microstructure controls the corrosion behavior of a lean biodegradable Mg-2Zn alloy. Wang W; Wu H; Zan R; Sun Y; Blawert C; Zhang S; Ni J; Zheludkevich ML; Zhang X Acta Biomater; 2020 Apr; 107():349-361. PubMed ID: 32126309 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications. Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]