BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 36028289)

  • 1. Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study.
    Hosny A; Bitterman DS; Guthier CV; Qian JM; Roberts H; Perni S; Saraf A; Peng LC; Pashtan I; Ye Z; Kann BH; Kozono DE; Christiani D; Catalano PJ; Aerts HJWL; Mak RH
    Lancet Digit Health; 2022 Sep; 4(9):e657-e666. PubMed ID: 36028289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Crowd Innovation to Develop an Artificial Intelligence-Based Solution for Radiation Therapy Targeting.
    Mak RH; Endres MG; Paik JH; Sergeev RA; Aerts H; Williams CL; Lakhani KR; Guinan EC
    JAMA Oncol; 2019 May; 5(5):654-661. PubMed ID: 30998808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated lung tumor delineation on positron emission tomography/computed tomography via a hybrid regional network.
    Lei Y; Wang T; Jeong JJ; Janopaul-Naylor J; Kesarwala AH; Roper J; Tian S; Bradley JD; Liu T; Higgins K; Yang X
    Med Phys; 2023 Jan; 50(1):274-283. PubMed ID: 36203393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Evaluation of Deep Learning for Tumor Delineation on
    Kovacs DG; Ladefoged CN; Andersen KF; Brittain JM; Christensen CB; Dejanovic D; Hansen NL; Loft A; Petersen JH; Reichkendler M; Andersen FL; Fischer BM
    J Nucl Med; 2024 Feb; 65(4):623-9. PubMed ID: 38388516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning.
    Boyd A; Ye Z; Prabhu S; Tjong MC; Zha Y; Zapaishchykova A; Vajapeyam S; Hayat H; Chopra R; Liu KX; Nabavidazeh A; Resnick A; Mueller S; Haas-Kogan D; Aerts HJWL; Poussaint T; Kann BH
    medRxiv; 2023 Sep; ():. PubMed ID: 37425854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of deep learning networks for fully automated head and neck tumor delineation on multi-centric PET/CT images.
    Wang Y; Lombardo E; Huang L; Avanzo M; Fanetti G; Franchin G; Zschaeck S; Weingärtner J; Belka C; Riboldi M; Kurz C; Landry G
    Radiat Oncol; 2024 Jan; 19(1):3. PubMed ID: 38191431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testing.
    Garrett Fernandes M; Bussink J; Stam B; Wijsman R; Schinagl DAX; Monshouwer R; Teuwen J
    Radiother Oncol; 2021 Dec; 165():52-59. PubMed ID: 34688808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edge roughness quantifies impact of physician variation on training and performance of deep learning auto-segmentation models for the esophagus.
    Yan Y; Kehayias C; He J; Aerts HJWL; Fitzgerald KJ; Kann BH; Kozono DE; Guthier CV; Mak RH
    Sci Rep; 2024 Jan; 14(1):2536. PubMed ID: 38291051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer.
    Zeleznik R; Weiss J; Taron J; Guthier C; Bitterman DS; Hancox C; Kann BH; Kim DW; Punglia RS; Bredfeldt J; Foldyna B; Eslami P; Lu MT; Hoffmann U; Mak R; Aerts HJWL
    NPJ Digit Med; 2021 Mar; 4(1):43. PubMed ID: 33674717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical validation of a semi-automated segmentation algorithm for target volume definition on planning CT and CBCT in stereotactic body radiotherapy (SBRT) for peripheral lung lesions.
    Mohamed AA; Risse K; Schmitz L; Schlenter M; Chughtai A; Ivanciu M; Eble MJ
    J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):37-47. PubMed ID: 36424343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation.
    Carles M; Fechter T; Nemer U; Nanko N; Mix M; Nestle U; Schaefer A
    Phys Med Biol; 2015 Dec; 60(24):9227-51. PubMed ID: 26576926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study.
    Nikolov S; Blackwell S; Zverovitch A; Mendes R; Livne M; De Fauw J; Patel Y; Meyer C; Askham H; Romera-Paredes B; Kelly C; Karthikesalingam A; Chu C; Carnell D; Boon C; D'Souza D; Moinuddin SA; Garie B; McQuinlan Y; Ireland S; Hampton K; Fuller K; Montgomery H; Rees G; Suleyman M; Back T; Hughes CO; Ledsam JR; Ronneberger O
    J Med Internet Res; 2021 Jul; 23(7):e26151. PubMed ID: 34255661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge.
    Combalia M; Codella N; Rotemberg V; Carrera C; Dusza S; Gutman D; Helba B; Kittler H; Kurtansky NR; Liopyris K; Marchetti MA; Podlipnik S; Puig S; Rinner C; Tschandl P; Weber J; Halpern A; Malvehy J
    Lancet Digit Health; 2022 May; 4(5):e330-e339. PubMed ID: 35461690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography.
    Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D
    Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy.
    Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S
    Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of simultaneous uncertainty quantification for image segmentation with probabilistic deep learning: Performance benchmarking of oropharyngeal cancer target delineation as a use-case.
    Sahlsten J; Jaskari J; Wahid KA; Ahmed S; Glerean E; He R; Kann BH; Mäkitie A; Fuller CD; Naser MA; Kaski K
    medRxiv; 2023 Feb; ():. PubMed ID: 36865296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.