These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36028482)

  • 1. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform.
    Zhang L; King E; Black WB; Heckmann CM; Wolder A; Cui Y; Nicklen F; Siegel JB; Luo R; Paul CE; Li H
    Nat Commun; 2022 Aug; 13(1):5021. PubMed ID: 36028482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifting redox reaction equilibria on demand using an orthogonal redox cofactor.
    Aspacio D; Zhang Y; Cui Y; Luu E; King E; Black WB; Perea S; Zhu Q; Wu Y; Luo R; Siegel JB; Li H
    Nat Chem Biol; 2024 Aug; ():. PubMed ID: 39138383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor.
    Black WB; Aspacio D; Bever D; King E; Zhang L; Li H
    Microb Cell Fact; 2020 Jul; 19(1):150. PubMed ID: 32718347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis.
    Black WB; Zhang L; Mak WS; Maxel S; Cui Y; King E; Fong B; Sanchez Martinez A; Siegel JB; Li H
    Nat Chem Biol; 2020 Jan; 16(1):87-94. PubMed ID: 31768035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor.
    Aspacio D; Zhang Y; Cui Y; King E; Black WB; Perea S; Luu E; Siegel JB; Li H
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration.
    Johannes TW; Woodyer RD; Zhao H
    Appl Environ Microbiol; 2005 Oct; 71(10):5728-34. PubMed ID: 16204481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration.
    Nielsen JR; Weusthuis RA; Huang WE
    Biotechnol Adv; 2023; 63():108102. PubMed ID: 36681133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase.
    Woodyer R; van der Donk WA; Zhao H
    Comb Chem High Throughput Screen; 2006 May; 9(4):237-45. PubMed ID: 16724915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase.
    King E; Maxel S; Zhang Y; Kenney KC; Cui Y; Luu E; Siegel JB; Weiss GA; Luo R; Li H
    Nat Commun; 2022 Nov; 13(1):7282. PubMed ID: 36435948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Free Noncanonical Redox Cofactor Systems.
    Black WB; Li H
    Methods Mol Biol; 2022; 2433():185-198. PubMed ID: 34985745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.
    Woodyer R; van der Donk WA; Zhao H
    Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Embden-Meyerhof-Parnas Glycolysis to Generate Noncanonical Reducing Power.
    King E; Cui Y; Aspacio D; Nicklen F; Zhang L; Maxel S; Luo R; Siegel JB; Aitchison E; Li H
    ACS Catal; 2022 Jul; 12(14):8582-8592. PubMed ID: 37622090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development.
    King E; Maxel S; Li H
    Curr Opin Biotechnol; 2020 Dec; 66():217-226. PubMed ID: 32956903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phosphite-based screening platform for identification of enzymes favoring nonnatural cofactors.
    Liu Y; Li Z; Guo X; Wang X; Zhao ZK
    Sci Rep; 2022 Jul; 12(1):12484. PubMed ID: 35864126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolomics for biotransformations: Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes.
    Schroer K; Zelic B; Oldiges M; Lütz S
    Biotechnol Bioeng; 2009 Oct; 104(2):251-60. PubMed ID: 19489025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.
    Wang X; Zhou YJ; Wang L; Liu W; Liu Y; Peng C; Zhao ZK
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.