These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36028567)

  • 1. Experimental characterization of [Formula: see text]/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS).
    Boon M; Hajibeygi H
    Sci Rep; 2022 Aug; 12(1):14604. PubMed ID: 36028567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media.
    Hashemi L; Blunt M; Hajibeygi H
    Sci Rep; 2021 Apr; 11(1):8348. PubMed ID: 33863943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating [Formula: see text] breakthrough in a shaly a caprock material: a multi-scale experimental approach.
    Stavropoulou E; Laloui L
    Sci Rep; 2022 Jun; 12(1):10706. PubMed ID: 35739225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ capillary pressure and wettability in natural porous media: Multi-scale experimentation and automated characterization using X-ray images.
    Zankoor A; Khishvand M; Mohamed A; Wang R; Piri M
    J Colloid Interface Sci; 2021 Dec; 603():356-369. PubMed ID: 34197985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial induced wettability alteration with implications for Underground Hydrogen Storage.
    Boon M; Buntic I; Ahmed K; Dopffel N; Peters C; Hajibeygi H
    Sci Rep; 2024 Apr; 14(1):8248. PubMed ID: 38589617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging porosity evolution of tight sandstone during spontaneous water imbibition by X-ray Micro-CT.
    Miletić M; Küçükuysal C; Gülcan M; Garcia R
    Heliyon; 2024 Jun; 10(11):e31844. PubMed ID: 38845948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability.
    Jangda Z; Menke H; Busch A; Geiger S; Bultreys T; Lewis H; Singh K
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):316-325. PubMed ID: 36162389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Underground hydrogen storage: Influencing parameters and future outlook.
    Pan B; Yin X; Ju Y; Iglauer S
    Adv Colloid Interface Sci; 2021 Aug; 294():102473. PubMed ID: 34229179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Imbibition and Evaporation in Rocks at the Nanometer Scale.
    Wensink G; Schröer L; Dell HP; Cnudde V; Rücker M
    Energy Fuels; 2023 Dec; 37(23):18713-18721. PubMed ID: 38094911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas permeability of ice-templated, unidirectional porous ceramics.
    Seuba J; Deville S; Guizard C; Stevenson AJ
    Sci Technol Adv Mater; 2016; 17(1):313-323. PubMed ID: 27877884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Study: The Effect of Pore Shape, Geometrical Heterogeneity, and Flow Rate on the Repetitive Two-Phase Fluid Transport in Microfluidic Porous Media.
    Kim S; Zhang J; Ryu S
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.
    Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ
    J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The upper percolation threshold and porosity-permeability relationship in sandstone reservoirs using digital image analysis.
    Payton RL; Chiarella D; Kingdon A
    Sci Rep; 2022 Jul; 12(1):11311. PubMed ID: 35788682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of vertical fluid mobility of CO[Formula: see text], methane, hydrogen and hydrocarbons through sandstones and carbonates.
    Lodhia BH; Clark SR
    Sci Rep; 2022 Jun; 12(1):10216. PubMed ID: 35715456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of pore-scale CO
    Behnoud P; Khorsand Movaghar MR; Sabooniha E
    Sci Rep; 2023 Aug; 13(1):12632. PubMed ID: 37537236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetohydrodynamic double-diffusive peristaltic flow of radiating fourth-grade nanofluid through a porous medium with viscous dissipation and heat generation/absorption.
    Mohamed RA; Abo-Dahab SM; Abd-Alla AM; Soliman MS
    Sci Rep; 2023 Aug; 13(1):13096. PubMed ID: 37567889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the Process and Mechanism of Water-Rock Interaction in Underground Coal Mine Reservoirs Based on Indoor Static Simulation Experiments.
    Zhang K; Deng X; Gao J; Liu S; Wang F; Han J
    ACS Omega; 2022 Oct; 7(41):36387-36402. PubMed ID: 36278070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.