These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 36028949)
1. Numerical study on the performance of centrifugal blood pump with superhydrophobic surface. Li C; Qiu H; Ma J; Wang Y Int J Artif Organs; 2022 Dec; 45(12):1028-1036. PubMed ID: 36028949 [TBL] [Abstract][Full Text] [Related]
2. Numerical study on the performance of mixed flow blood pump with superhydrophobic surface. Li C; Qiu H; Ma J; Wang Y Med Biol Eng Comput; 2023 Nov; 61(11):3103-3121. PubMed ID: 37656332 [TBL] [Abstract][Full Text] [Related]
3. [Numerical study of the effect of geometrical parameters of straight impellers on the flow and hemolysis performance of centrifugal blood pumps]. Huang D; Xiong S; Xiao Y; Wang J; Cui G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):577-583. PubMed ID: 38932545 [TBL] [Abstract][Full Text] [Related]
4. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO. Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603 [TBL] [Abstract][Full Text] [Related]
5. Hemodynamic evaluation and Fu M; Liu G; Wang W; Gao B; Ji B; Chang Y; Liu Y Ann Transl Med; 2021 Apr; 9(8):679. PubMed ID: 33987377 [TBL] [Abstract][Full Text] [Related]
6. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump. Lv S; He ZP; Liu GM; Hu SS Comput Methods Biomech Biomed Engin; 2024 Oct; 27(13):1744-1755. PubMed ID: 37724774 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361 [TBL] [Abstract][Full Text] [Related]
8. [Numerical simulation and performance analysis of mixed flow blood pump]. Luo J; Huang D; Xu B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):296-303. PubMed ID: 32329282 [TBL] [Abstract][Full Text] [Related]
9. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Fang P; Du J; Yu S Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159 [TBL] [Abstract][Full Text] [Related]
10. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study. Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614 [TBL] [Abstract][Full Text] [Related]
11. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model]. Shou C; Guo Y; Su L; Li Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1260-4. PubMed ID: 25868241 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps. Mozafari S; Rezaienia MA; Paul GM; Rothman MT; Wen P; Korakianitis T ASAIO J; 2017; 63(1):53-59. PubMed ID: 28033202 [TBL] [Abstract][Full Text] [Related]
13. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related]
14. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Ozturk C; Aka IB; Lazoglu I Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774 [TBL] [Abstract][Full Text] [Related]
15. Multi-Objective Genetic Algorithm Assisted by an Artificial Neural Network Metamodel for Shape Optimization of a Centrifugal Blood Pump. Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N Artif Organs; 2019 May; 43(5):E76-E93. PubMed ID: 30282114 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump. Qu Y; Guo Z; Zhang J; Li G; Zhang S; Li D Artif Organs; 2022 Aug; 46(8):1533-1543. PubMed ID: 35167128 [TBL] [Abstract][Full Text] [Related]
17. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump. Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544 [TBL] [Abstract][Full Text] [Related]
18. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
19. [Hemolysis Performance Analysis of the Centrifugal Maglev Blood Pump]. Wang Y; Zhang F; Fang Y; Dong B; Zhou L Zhongguo Yi Liao Qi Xie Za Zhi; 2016 May; 40(3):169-72. PubMed ID: 29775252 [TBL] [Abstract][Full Text] [Related]
20. Design considerations of volute geometry of a centrifugal blood pump. Chan WK; Wong YW; Hu W Artif Organs; 2005 Dec; 29(12):937-48. PubMed ID: 16305649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]