BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36028949)

  • 1. Numerical study on the performance of centrifugal blood pump with superhydrophobic surface.
    Li C; Qiu H; Ma J; Wang Y
    Int J Artif Organs; 2022 Dec; 45(12):1028-1036. PubMed ID: 36028949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study on the performance of mixed flow blood pump with superhydrophobic surface.
    Li C; Qiu H; Ma J; Wang Y
    Med Biol Eng Comput; 2023 Nov; 61(11):3103-3121. PubMed ID: 37656332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Numerical study of the effect of geometrical parameters of straight impellers on the flow and hemolysis performance of centrifugal blood pumps].
    Huang D; Xiong S; Xiao Y; Wang J; Cui G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):577-583. PubMed ID: 38932545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO.
    Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y
    Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic evaluation and
    Fu M; Liu G; Wang W; Gao B; Ji B; Chang Y; Liu Y
    Ann Transl Med; 2021 Apr; 9(8):679. PubMed ID: 33987377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Numerical simulation and performance analysis of mixed flow blood pump].
    Luo J; Huang D; Xu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):296-303. PubMed ID: 32329282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].
    Shou C; Guo Y; Su L; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1260-4. PubMed ID: 25868241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps.
    Mozafari S; Rezaienia MA; Paul GM; Rothman MT; Wen P; Korakianitis T
    ASAIO J; 2017; 63(1):53-59. PubMed ID: 28033202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Objective Genetic Algorithm Assisted by an Artificial Neural Network Metamodel for Shape Optimization of a Centrifugal Blood Pump.
    Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N
    Artif Organs; 2019 May; 43(5):E76-E93. PubMed ID: 30282114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump.
    Qu Y; Guo Z; Zhang J; Li G; Zhang S; Li D
    Artif Organs; 2022 Aug; 46(8):1533-1543. PubMed ID: 35167128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump.
    Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hemolysis Performance Analysis of the Centrifugal Maglev Blood Pump].
    Wang Y; Zhang F; Fang Y; Dong B; Zhou L
    Zhongguo Yi Liao Qi Xie Za Zhi; 2016 May; 40(3):169-72. PubMed ID: 29775252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design considerations of volute geometry of a centrifugal blood pump.
    Chan WK; Wong YW; Hu W
    Artif Organs; 2005 Dec; 29(12):937-48. PubMed ID: 16305649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an Adjustable Blood Pump for Wide-Range Operation: In-Vitro Results of Performance Curve and Hydraulic Efficiency.
    Jansen SV; Heinemann C; Schüller M; Schmitz-Rode T; Steinseifer U
    ASAIO J; 2024 Jul; 70(7):579-585. PubMed ID: 38386997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.