These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 36028949)
21. Toward an Adjustable Blood Pump for Wide-Range Operation: In-Vitro Results of Performance Curve and Hydraulic Efficiency. Jansen SV; Heinemann C; Schüller M; Schmitz-Rode T; Steinseifer U ASAIO J; 2024 Jul; 70(7):579-585. PubMed ID: 38386997 [TBL] [Abstract][Full Text] [Related]
22. Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps. Wang L; Yun Z; Tang X; Xiang C Int J Artif Organs; 2024 Mar; 47(3):162-172. PubMed ID: 38450429 [TBL] [Abstract][Full Text] [Related]
23. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps. He G; Zhang J; Shah A; Berk ZB; Han L; Dong H; Griffith BP; Wu ZJ Int J Artif Organs; 2021 Nov; 44(11):829-837. PubMed ID: 34494469 [TBL] [Abstract][Full Text] [Related]
24. Shape optimization of a centrifugal blood pump by coupling CFD with metamodel-assisted genetic algorithm. Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N J Artif Organs; 2019 Mar; 22(1):29-36. PubMed ID: 30311022 [TBL] [Abstract][Full Text] [Related]
25. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles. Song G; Chua LP; Lim TM Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732 [TBL] [Abstract][Full Text] [Related]
26. Effect of surface roughness on hemolysis in a pivot bearing supported Gyro centrifugal pump (C1E3). Takami Y; Makinouchi K; Nakazawa T; Glueck J; Benkowski R; Nosé Y Artif Organs; 1996 Nov; 20(11):1155-61. PubMed ID: 8908324 [TBL] [Abstract][Full Text] [Related]
27. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis. Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763 [TBL] [Abstract][Full Text] [Related]
28. Development of a magnetically suspended centrifugal pump as a cardiac assist device for long-term application. Nishimura K; Park CH; Akamatsu T; Yamada T; Ban T ASAIO J; 1996; 42(1):68-71. PubMed ID: 8808462 [TBL] [Abstract][Full Text] [Related]
29. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump. Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297 [TBL] [Abstract][Full Text] [Related]
31. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump. Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696 [TBL] [Abstract][Full Text] [Related]
32. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Wu J; Paden BE; Borovetz HS; Antaki JF Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736 [TBL] [Abstract][Full Text] [Related]
33. Hemodynamic investigation of a novel rotary displacement blood pump for extracorporeal membrane oxygenation. Xue Q; Ren X; Gao B; Li S; Song Z; Ding J; Chang Y Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3705. PubMed ID: 37005088 [TBL] [Abstract][Full Text] [Related]
34. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades]. Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539 [TBL] [Abstract][Full Text] [Related]
35. Effect of surface roughness on hemolysis in a centrifugal blood pump. Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y ASAIO J; 1996; 42(5):M858-62. PubMed ID: 8945006 [TBL] [Abstract][Full Text] [Related]
36. Numerical assessment of hemodynamic perspectives of a left ventricular assist device and subsequent proposal for improvisation. Ray PK; Das AK; Das PK Comput Biol Med; 2022 Dec; 151(Pt A):106309. PubMed ID: 36410098 [TBL] [Abstract][Full Text] [Related]
37. Numerical simulation of the leakage flow of the hydrodynamically levitated centrifugal blood pump for extracorporeal mechanical circulatory support systems. Tsukiya T; Nishinaka T J Artif Organs; 2023 Sep; 26(3):176-183. PubMed ID: 35907152 [TBL] [Abstract][Full Text] [Related]
38. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential. Dame D Artif Organs; 1996 Jun; 20(6):613-7. PubMed ID: 8817965 [TBL] [Abstract][Full Text] [Related]
39. Mechanical antithrombogenic properties by vibrational excitation of the impeller in a magnetically levitated centrifugal blood pump. Murashige T; Hijikata W Artif Organs; 2019 Sep; 43(9):849-859. PubMed ID: 31321785 [TBL] [Abstract][Full Text] [Related]
40. Feasibility of a miniature centrifugal rotary blood pump for low-flow circulation in children and infants. Takatani S; Hoshi H; Tajima K; Ohuchi K; Nakamura M; Asama J; Shimshi T; Yoshikawa M ASAIO J; 2005; 51(5):557-62. PubMed ID: 16322718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]