These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36028949)

  • 41. Hemolytic effects of surface roughness of a pump housing in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1997 May; 21(5):428-32. PubMed ID: 9129778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests.
    Masuzawa T; Tsukiya T; Endo S; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Miyazoe Y; Ito K; Sawairi T; Konishi Y
    Artif Organs; 1999 Aug; 23(8):757-61. PubMed ID: 10463503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag.
    Han D; Leibowitz JL; Han L; Wang S; He G; Griffith BP; Wu ZJ
    Med Nov Technol Devices; 2022 Sep; 15():. PubMed ID: 36157896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the Optimization of a Centrifugal Maglev Blood Pump Through Design Variations.
    Wu P; Huo J; Dai W; Wu WT; Yin C; Li S
    Front Physiol; 2021; 12():699891. PubMed ID: 34220556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical study of a centrifugal blood pump with different impeller profiles.
    Song G; Chua LP; Lim TM
    ASAIO J; 2010; 56(1):24-9. PubMed ID: 20019595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PIV measurements of flow in a centrifugal blood pump: steady flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stochastic simulation of the FDA centrifugal blood pump benchmark.
    Karimi MS; Razzaghi P; Raisee M; Hendrick P; Nourbakhsh A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1871-1887. PubMed ID: 34191187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hemolysis in different centrifugal pumps.
    Kawahito K; Nosé Y
    Artif Organs; 1997 Apr; 21(4):323-6. PubMed ID: 9096806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump.
    Chan WK; Wong YW; Ding Y; Chua LP; Yu SC
    Artif Organs; 2002 Sep; 26(9):785-93. PubMed ID: 12197935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump.
    Bludszuweit C
    Artif Organs; 1995 Jul; 19(7):590-6. PubMed ID: 8572957
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical and In Vitro Experimental Investigation of the Hemolytic Performance at the Off-Design Point of an Axial Ventricular Assist Pump.
    Liu GM; Jin DH; Jiang XH; Zhou JY; Zhang Y; Chen HB; Hu SS; Gui XM
    ASAIO J; 2016; 62(6):657-665. PubMed ID: 27556144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The helical flow pump with a hydrodynamic levitation impeller.
    Abe Y; Ishii K; Isoyama T; Saito I; Inoue Y; Ono T; Nakagawa H; Nakano E; Fukazawa K; Ishihara K; Fukunaga K; Ono M; Imachi K
    J Artif Organs; 2012 Dec; 15(4):331-40. PubMed ID: 22926404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Properties of a monopivot centrifugal blood pump manufactured by 3D printing.
    Nishida M; Negishi T; Sakota D; Kosaka R; Maruyama O; Hyakutake T; Kuwana K; Yamane T
    J Artif Organs; 2016 Dec; 19(4):322-329. PubMed ID: 27370698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of a centrifugal blood pump designed using an industrial method through experimental and numerical study.
    Yazdanpanah-Ardakani K; Niroomand-Oscuii H; Sahebi-Kuzeh Kanan R; Shokri N
    Sci Rep; 2024 Mar; 14(1):7443. PubMed ID: 38548818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impeller design for a miniaturized centrifugal blood pump.
    Takano T; Schulte-Eistrup S; Yoshikawa M; Nakata K; Kawahito S; Maeda T; Nonaka K; Linneweber J; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 2000 Oct; 24(10):821-5. PubMed ID: 11091172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.