These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36029032)

  • 1. N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: A microsecond long molecular dynamics study.
    Mathew AT; Baidya ATK; Das B; Devi B; Kumar R
    Proteins; 2023 Feb; 91(2):147-160. PubMed ID: 36029032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation.
    Liu H; Zhong H; Liu X; Zhou S; Tan S; Liu H; Yao X
    ACS Chem Neurosci; 2019 Dec; 10(12):4810-4823. PubMed ID: 31661961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Effect of Lysine Acetylation on the Misfolding and Aggregation of Human Tau Fragment
    Shah SJA; Zhong H; Zhang Q; Liu H
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study.
    Liu H; Zhong H; Xu Z; Zhang Q; Shah SJA; Liu H; Yao X
    Phys Chem Chem Phys; 2020 May; 22(19):10968-10980. PubMed ID: 32392276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation.
    Zhong H; Liu H; Liu H
    Curr Med Chem; 2024; 31(20):2855-2871. PubMed ID: 37031392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns.
    Gandhi NS; Kukic P; Lippens G; Mancera RL
    Methods Mol Biol; 2017; 1523():33-59. PubMed ID: 27975243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper (Cu
    Jing J; Tu G; Yu H; Huang R; Ming X; Zhan H; Zhan F; Xue W
    Phys Chem Chem Phys; 2021 May; 23(20):11717-11726. PubMed ID: 33982037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease.
    Liu F; Zaidi T; Iqbal K; Grundke-Iqbal I; Merkle RK; Gong CX
    FEBS Lett; 2002 Feb; 512(1-3):101-6. PubMed ID: 11852060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel model of secreted human tau protein reveals the impact of the abnormal N-glycosylation of tau on its aggregation propensity.
    Losev Y; Paul A; Frenkel-Pinter M; Abu-Hussein M; Khalaila I; Gazit E; Segal D
    Sci Rep; 2019 Feb; 9(1):2254. PubMed ID: 30783169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation.
    Lu D; Yang C; Liu Z
    J Phys Chem B; 2012 Jan; 116(1):390-400. PubMed ID: 22118044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational Dynamics of Intracellular Tau Protein Revealed by CD and SAXS.
    Gorantla NV; Shkumatov AV; Chinnathambi S
    Methods Mol Biol; 2017; 1523():3-20. PubMed ID: 27975241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Inhibition of Aggregation and Toxicity of a Tau-Derived Peptide using Its Glycosylated Analogues.
    Frenkel-Pinter M; Richman M; Belostozky A; Abu-Mokh A; Gazit E; Rahimipour S; Segal D
    Chemistry; 2016 Apr; 22(17):5945-52. PubMed ID: 26891276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers.
    Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ
    J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic Insights into the Inhibitory Mechanism of Tyrosine Phosphorylation against the Aggregation of Human Tau Fragment PHF6.
    Zou Y; Guan L; Tan J; Qi B; Wang Y; Zhang Q; Sun Y
    J Phys Chem B; 2023 Jan; 127(1):335-345. PubMed ID: 36594671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations.
    Dong X; Qi R; Qiao Q; Li X; Li F; Wan J; Zhang Q; Wei G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20406-20418. PubMed ID: 34494046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Phosphorylation and O-GlcNAcylation on Proline-Rich Domains of Tau.
    Rani L; Mittal J; Mallajosyula SS
    J Phys Chem B; 2020 Mar; 124(10):1909-1918. PubMed ID: 32065850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation.
    Smet-Nocca C; Broncel M; Wieruszeski JM; Tokarski C; Hanoulle X; Leroy A; Landrieu I; Rolando C; Lippens G; Hackenberger CP
    Mol Biosyst; 2011 May; 7(5):1420-9. PubMed ID: 21327254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulations of the Tau R3-R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model.
    Nguyen PH; Derreumaux P
    J Phys Chem B; 2022 May; 126(18):3431-3438. PubMed ID: 35476504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics simulation of soybean agglutinin (SBA) dimer reveals the impact of glycosylation on its enhanced structural stability.
    Halder S; Surolia A; Mukhopadhyay C
    Carbohydr Res; 2016 Jun; 428():8-17. PubMed ID: 27108103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer's disease.
    Wang JZ; Grundke-Iqbal I; Iqbal K
    Nat Med; 1996 Aug; 2(8):871-5. PubMed ID: 8705855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.