BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36029126)

  • 1. Programmable RNA base editing with a single gRNA-free enzyme.
    Han W; Huang W; Wei T; Ye Y; Mao M; Wang Z
    Nucleic Acids Res; 2022 Sep; 50(16):9580-9595. PubMed ID: 36029126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing.
    Marina RJ; Brannan KW; Dong KD; Yee BA; Yeo GW
    Cell Rep; 2020 Nov; 33(5):108350. PubMed ID: 33147453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo.
    Reautschnig P; Wahn N; Wettengel J; Schulz AE; Latifi N; Vogel P; Kang TW; Pfeiffer LS; Zarges C; Naumann U; Zender L; Li JB; Stafforst T
    Nat Biotechnol; 2022 May; 40(5):759-768. PubMed ID: 34980913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 mediated high efficiency knockout of the eye color gene Vermillion in Helicoverpa zea (Boddie).
    Perera OP; Little NS; Pierce CA
    PLoS One; 2018; 13(5):e0197567. PubMed ID: 29771955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering guide RNA to reduce the off-target effects of CRISPR.
    Wu J; Yin H
    J Genet Genomics; 2019 Nov; 46(11):523-529. PubMed ID: 31902584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Single and Multiplex Base-Editing in
    Li Y; Ma S; Sun L; Zhang T; Chang J; Lu W; Chen X; Liu Y; Wang X; Shi R; Zhao P; Xia Q
    G3 (Bethesda); 2018 May; 8(5):1701-1709. PubMed ID: 29555822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Chain Guide RNA for Site-Directed A-to-I RNA Editing.
    Nose K; Hidaka K; Yano T; Tomita Y; Fukuda M
    Nucleic Acid Ther; 2021 Feb; 31(1):58-67. PubMed ID: 33170095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered circular guide RNAs boost CRISPR/Cas12a- and CRISPR/Cas13d-based DNA and RNA editing.
    Zhang X; Wang X; Lv J; Huang H; Wang J; Zhuo M; Tan Z; Huang G; Liu J; Liu Y; Li M; Lin Q; Li L; Ma S; Huang T; Lin Y; Zhao X; Rong Z
    Genome Biol; 2023 Jun; 24(1):145. PubMed ID: 37353840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Split complementation of base editors to minimize off-target edits.
    Xiong X; Liu K; Li Z; Xia FN; Ruan XM; He X; Li JF
    Nat Plants; 2023 Nov; 9(11):1832-1847. PubMed ID: 37845337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage.
    Riesenberg S; Helmbrecht N; Kanis P; Maricic T; Pääbo S
    Nat Commun; 2022 Jan; 13(1):489. PubMed ID: 35078986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosine base editing systems with minimized off-target effect and molecular size.
    Li A; Mitsunobu H; Yoshioka S; Suzuki T; Kondo A; Nishida K
    Nat Commun; 2022 Aug; 13(1):4531. PubMed ID: 35941130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Engineered Programmable Systems for ADAR-Mediated RNA Editing.
    Aquino-Jarquin G
    Mol Ther Nucleic Acids; 2020 Mar; 19():1065-1072. PubMed ID: 32044725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Dandage R; Després PC; Yachie N; Landry CR
    Genetics; 2019 Jun; 212(2):377-385. PubMed ID: 30936113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells.
    Liu W; Rudis MR; Cheplick MH; Millwood RJ; Yang JP; Ondzighi-Assoume CA; Montgomery GA; Burris KP; Mazarei M; Chesnut JD; Stewart CN
    Plant Cell Rep; 2020 Feb; 39(2):245-257. PubMed ID: 31728703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S.
    Latifi N; Mack AM; Tellioglu I; Di Giorgio S; Stafforst T
    Nucleic Acids Res; 2023 Aug; 51(15):e84. PubMed ID: 37462074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.