These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36029126)

  • 41. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.
    Xie K; Minkenberg B; Yang Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3570-5. PubMed ID: 25733849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving Precise Genome Editing Using Donor DNA/gRNA Hybrid Duplex Generated by Complementary Bases.
    Aiba W; Amai T; Ueda M; Kuroda K
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36358971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Programmable RNA base editing with photoactivatable CRISPR-Cas13.
    Yu J; Shin J; Yu J; Kim J; Yu D; Heo WD
    Nat Commun; 2024 Jan; 15(1):673. PubMed ID: 38253589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR Nickase-Mediated Base Editing in Yeast.
    Kuroda K; Ueda M
    Methods Mol Biol; 2021; 2196():27-37. PubMed ID: 32889710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
    Briner AE; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determinants for Efficient Editing with Cas9-Mediated Recombineering in
    Choudhury A; Fankhauser RG; Freed EF; Oh EJ; Morgenthaler AB; Bassalo MC; Copley SD; Kaar JL; Gill RT
    ACS Synth Biol; 2020 May; 9(5):1083-1099. PubMed ID: 32298586
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Genome Editing Achieved via Plug-and-Play Adenovirus Piggyback Transport of Cas9/gRNA Complex on Viral Capsid Surface.
    Lu ZH; Li J; Dmitriev IP; Kashentseva EA; Curiel DT
    ACS Nano; 2022 Jul; 16(7):10443-10455. PubMed ID: 35749339
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing.
    Chen G; Katrekar D; Mali P
    Biochemistry; 2019 Apr; 58(15):1947-1957. PubMed ID: 30943016
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The length of guide RNA and target DNA heteroduplex effects on CRISPR/Cas9 mediated genome editing efficiency in porcine cells.
    Lv J; Wu S; Wei R; Li Y; Jin J; Mu Y; Zhang Y; Kong Q; Weng X; Liu Z
    J Vet Sci; 2019 May; 20(3):e23. PubMed ID: 31161741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-directed RNA editing (SDRE): Off-target effects and their countermeasures.
    Mao S; Liu Y; Huang S; Huang X; Chi T
    J Genet Genomics; 2019 Nov; 46(11):531-535. PubMed ID: 31889638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
    Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM
    Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and application of the transformer base editor in mammalian cells and mice.
    Han W; Gao BQ; Zhu J; He Z; Li J; Yang L; Chen J
    Nat Protoc; 2023 Nov; 18(11):3194-3228. PubMed ID: 37794072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Optimization of CRISPR/Cas9-based multiplex base editing in
    Lu H; Zhang Q; Yu S; Wang Y; Kang M; Han S; Liu Y; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):780-795. PubMed ID: 35234398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing.
    Luo Y; Na R; Nowak JS; Qiu Y; Lu QS; Yang C; Marsolais F; Tian L
    BMC Plant Biol; 2021 Sep; 21(1):419. PubMed ID: 34517842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.