BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36029211)

  • 1. Corticospinal Control of a Challenging Ankle Task in Incomplete Spinal Cord Injury.
    Cathomen A; Meier F; Lerch I; Killeen T; Zörner B; Curt A; Bolliger M
    J Neurotrauma; 2023 May; 40(9-10):952-964. PubMed ID: 36029211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Walking in Incomplete Spinal Cord Injury: Role of Corticospinal Control.
    Meyer C; Filli L; Stalder SA; Awai Easthope C; Killeen T; von Tscharner V; Curt A; Zörner B; Bolliger M
    J Neurotrauma; 2020 Nov; 37(21):2302-2314. PubMed ID: 32552335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramuscular coherence during challenging walking in incomplete spinal cord injury: Reduced high-frequency coherence reflects impaired supra-spinal control.
    Zipser-Mohammadzada F; Conway BA; Halliday DM; Zipser CM; Easthope CA; Curt A; Schubert M
    Front Hum Neurosci; 2022; 16():927704. PubMed ID: 35992941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle dexterity is less impaired than muscle strength in incomplete spinal cord lesion.
    Wirth B; van Hedel HJ; Curt A
    J Neurol; 2008 Feb; 255(2):273-9. PubMed ID: 18204802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate Effects of Transcutaneous Spinal Cord Stimulation on Motor Function in Chronic, Sensorimotor Incomplete Spinal Cord Injury.
    Meyer C; Hofstoetter US; Hubli M; Hassani RH; Rinaldo C; Curt A; Bolliger M
    J Clin Med; 2020 Nov; 9(11):. PubMed ID: 33147884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury.
    Chisholm AE; Qaiser T; Williams AMM; Eginyan G; Lam T
    J Neurophysiol; 2019 Mar; 121(3):1078-1084. PubMed ID: 30726165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.
    Zhou R; Alvarado L; Kim S; Chong SL; Mushahwar VK
    J Neurophysiol; 2017 Oct; 118(4):2507-2519. PubMed ID: 28701544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle motor skill is intact in spinal cord injury, unlike stroke: implications for rehabilitation.
    van Hedel HJ; Wirth B; Curt A
    Neurology; 2010 Apr; 74(16):1271-8. PubMed ID: 20404308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural control strategy after incomplete spinal cord injury: effect of sensory inputs on trunk-leg movement coordination.
    Noamani A; Lemay JF; Musselman KE; Rouhani H
    J Neuroeng Rehabil; 2020 Oct; 17(1):141. PubMed ID: 33109209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mind your step: Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury.
    Mohammadzada F; Zipser CM; Easthope CA; Halliday DM; Conway BA; Curt A; Schubert M
    J Neuroeng Rehabil; 2022 Mar; 19(1):36. PubMed ID: 35337335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.
    Varoqui D; Niu X; Mirbagheri MM
    J Neuroeng Rehabil; 2014 Mar; 11():46. PubMed ID: 24684813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interjoint coordination between the ankle and hip joints during quiet standing in individuals with motor incomplete spinal cord injury.
    Lee JW; Chan K; Unger J; Yoo J; Musselman KE; Masani K
    J Neurophysiol; 2021 May; 125(5):1681-1689. PubMed ID: 33625937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiological examination of the corticospinal system and voluntary motor control in motor-incomplete human spinal cord injury.
    McKay WB; Lee DC; Lim HK; Holmes SA; Sherwood AM
    Exp Brain Res; 2005 Jun; 163(3):379-87. PubMed ID: 15616810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle dexterity remains intact in patients with incomplete spinal cord injury in contrast to stroke patients.
    Wirth B; van Hedel HJ; Curt A
    Exp Brain Res; 2008 Nov; 191(3):353-61. PubMed ID: 18704382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of Leg Kinematics during Overground Walking in Persons with Chronic Incomplete Spinal Cord Injury.
    Sohn WJ; Tan AQ; Hayes HB; Pochiraju S; Deffeyes J; Trumbower RD
    J Neurotrauma; 2018 Nov; 35(21):2519-2529. PubMed ID: 29648987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.