These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36029392)

  • 41. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers.
    Seyedjafari E; Soleimani M; Ghaemi N; Sarbolouki MN
    J Mater Sci Mater Med; 2011 Jan; 22(1):165-74. PubMed ID: 21069560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration.
    Jegal SH; Park JH; Kim JH; Kim TH; Shin US; Kim TI; Kim HW
    Acta Biomater; 2011 Apr; 7(4):1609-17. PubMed ID: 21145435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polymerizing Pyrrole Coated Poly (l-lactic acid-co-ε-caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration.
    Song J; Sun B; Liu S; Chen W; Zhang Y; Wang C; Mo X; Che J; Ouyang Y; Yuan W; Fan C
    Front Mol Neurosci; 2016; 9():117. PubMed ID: 27877111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-
    Bar JK; Kowalczyk T; Grelewski PG; Stamnitz S; Paprocka M; Lis J; Lis-Nawara A; An S; Klimczak A
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds.
    Alipour M; Aghazadeh M; Akbarzadeh A; Vafajoo Z; Aghazadeh Z; Raeisdasteh Hokmabad V
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3431-3437. PubMed ID: 31411067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterisation and in vitro and in vivo evaluation of supercritical-CO2-foamed β-TCP/PLCL composites for bone applications.
    Pitkänen S; Paakinaho K; Pihlman H; Ahola N; Hannula M; Asikainen S; Manninen M; Morelius M; Keränen P; Hyttinen J; Kellomäki M; Laitinen-Vapaavuori O; Miettinen S
    Eur Cell Mater; 2019 Aug; 38():35-50. PubMed ID: 31381126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strength and histology of a nanofiber scaffold in rats.
    Fluke LM; Restrepo RD; Patel S; Hoagland BD; Krevetski LM; Stephenson JT
    J Surg Res; 2016 Oct; 205(2):432-439. PubMed ID: 27664893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration.
    Fu Y; Zhang J; Lin H; Mo A
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111367. PubMed ID: 33254986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold.
    Wang S; Zhu H; Meng Q
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers.
    Venugopal J; Low S; Choon AT; Sampath Kumar TS; Ramakrishna S
    J Mater Sci Mater Med; 2008 May; 19(5):2039-46. PubMed ID: 17957448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface mineralized hybrid nanofibrous scaffolds based on poly(l-lactide) and alginate enhances osteogenic differentiation of stem cells.
    Ataie M; Shabani I; Seyedjafari E
    J Biomed Mater Res A; 2019 Mar; 107(3):586-596. PubMed ID: 30390410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration.
    Hsu SH; Huang S; Wang YC; Kuo YC
    Acta Biomater; 2013 Jun; 9(6):6915-27. PubMed ID: 23416581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering.
    He X; Fu W; Feng B; Wang H; Liu Z; Yin M; Wang W; Zheng J
    J Nanosci Nanotechnol; 2013 Jun; 13(6):3818-25. PubMed ID: 23862413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin.
    Chang P; Li S; Sun Q; Guo K; Wang H; Li S; Zhang L; Xie Y; Zheng X; Liu Y
    J Tissue Eng; 2022; 13():20417314211063022. PubMed ID: 35024135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 58. 3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration.
    Qi J; Wang Y; Chen L; Chen L; Wen F; Huang L; Rueben P; Zhang C; Li H
    Regen Biomater; 2023; 10():rbad062. PubMed ID: 37520855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.