These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36029423)

  • 1. Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes.
    Alegret N; Dominguez-Alfaro A; Mecerreyes D; Prato M; Mestroni L; Peña B
    Cell Biol Toxicol; 2023 Aug; 39(4):1627-1639. PubMed ID: 36029423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells.
    Spearman BS; Hodge AJ; Porter JL; Hardy JG; Davis ZD; Xu T; Zhang X; Schmidt CE; Hamilton MC; Lipke EA
    Acta Biomater; 2015 Dec; 28():109-120. PubMed ID: 26407651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering.
    Dominguez-Alfaro A; Alegret N; Arnaiz B; González-Domínguez JM; Martin-Pacheco A; Cossío U; Porcarelli L; Bosi S; Vázquez E; Mecerreyes D; Prato M
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1269-1278. PubMed ID: 33464834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.
    Gorain B; Choudhury H; Pandey M; Kesharwani P; Abeer MM; Tekade RK; Hussain Z
    Biomed Pharmacother; 2018 Aug; 104():496-508. PubMed ID: 29800914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-Free Fabrication of Carbon Nanotube/Silk Fibroin Electrospun Matrices for Enhancing Cardiomyocyte Functionalities.
    Zhao G; Zhang X; Li B; Huang G; Xu F; Zhang X
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1630-1640. PubMed ID: 33455382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering.
    Lee J; Manoharan V; Cheung L; Lee S; Cha BH; Newman P; Farzad R; Mehrotra S; Zhang K; Khan F; Ghaderi M; Lin YD; Aftab S; Mostafalu P; Miscuglio M; Li J; Mandal BB; Hussain MA; Wan KT; Tang XS; Khademhosseini A; Shin SR
    ACS Nano; 2019 Nov; 13(11):12525-12539. PubMed ID: 31621284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
    Shin SR; Jung SM; Zalabany M; Kim K; Zorlutuna P; Kim SB; Nikkhah M; Khabiry M; Azize M; Kong J; Wan KT; Palacios T; Dokmeci MR; Bae H; Tang XS; Khademhosseini A
    ACS Nano; 2013 Mar; 7(3):2369-80. PubMed ID: 23363247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the β1-integrin-mediated signaling pathway.
    Sun H; Lü S; Jiang XX; Li X; Li H; Lin Q; Mou Y; Zhao Y; Han Y; Zhou J; Wang C
    Biomaterials; 2015 Jul; 55():84-95. PubMed ID: 25934454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering.
    Liang Y; Mitriashkin A; Lim TT; Goh JC
    Biomaterials; 2021 Sep; 276():121008. PubMed ID: 34265591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole.
    Alegret N; Dominguez-Alfaro A; González-Domínguez JM; Arnaiz B; Cossío U; Bosi S; Vázquez E; Ramos-Cabrer P; Mecerreyes D; Prato M
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43904-43914. PubMed ID: 30475577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation.
    Cui Z; Ni NC; Wu J; Du GQ; He S; Yau TM; Weisel RD; Sung HW; Li RK
    Theranostics; 2018; 8(10):2752-2764. PubMed ID: 29774073
    [No Abstract]   [Full Text] [Related]  

  • 17. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.
    Martinelli V; Cellot G; Toma FM; Long CS; Caldwell JH; Zentilin L; Giacca M; Turco A; Prato M; Ballerini L; Mestroni L
    ACS Nano; 2013 Jul; 7(7):5746-56. PubMed ID: 23734857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues.
    Ren J; Xu Q; Chen X; Li W; Guo K; Zhao Y; Wang Q; Zhang Z; Peng H; Li YG
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29024059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preservation of conductive propagation after surgical repair of cardiac defects with a bio-engineered conductive patch.
    He S; Song H; Wu J; Li SH; Weisel RD; Sung HW; Li J; Li RK
    J Heart Lung Transplant; 2018 Jul; 37(7):912-924. PubMed ID: 29397284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering.
    Mancino C; Hendrickson T; Whitney LV; Paradiso F; Abasi S; Tasciotti E; Taraballi F; Guiseppi-Elie A
    Nanomedicine; 2022 Aug; 44():102567. PubMed ID: 35595015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.