These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 36029590)
1. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers. Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590 [TBL] [Abstract][Full Text] [Related]
2. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225 [TBL] [Abstract][Full Text] [Related]
3. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
4. Depletion Flocculation of High Internal Phase Pickering Emulsion Inks: A Colloidal Engineering Approach to Develop 3D Printed Porous Scaffolds with Tunable Bioactive Delivery. Shahbazi M; Jäger H; Huc-Mathis D; Asghartabar Kashi P; Ettelaie R; Sarkar A; Chen J ACS Appl Mater Interfaces; 2024 Aug; 16(33):43430-43450. PubMed ID: 39110913 [TBL] [Abstract][Full Text] [Related]
5. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing. Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688 [TBL] [Abstract][Full Text] [Related]
6. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
7. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion. Junnila A; Mortier L; Arbiol A; Harju E; Tomberg T; Hirvonen J; Viitala T; Karttunen AP; Peltonen L Int J Pharm; 2024 Apr; 655():124070. PubMed ID: 38554740 [TBL] [Abstract][Full Text] [Related]
8. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
9. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. Zhang B; Belton P; Teoh XY; Gleadall A; Bibb R; Qi S J Mater Chem B; 2023 Dec; 12(1):131-144. PubMed ID: 38050731 [TBL] [Abstract][Full Text] [Related]
10. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Huan S; Ajdary R; Bai L; Klar V; Rojas OJ Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194 [TBL] [Abstract][Full Text] [Related]
11. Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks. Lu S; Pei Z; Lu Q; Li Q; He Y; Feng A; Liu Z; Xue C; Liu J; Lin X; Li Y; Li C Food Chem; 2024 Jul; 446():138810. PubMed ID: 38402769 [TBL] [Abstract][Full Text] [Related]
12. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
13. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Lu Y; Rai R; Nitin N Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Tyowua AT; Harbottle D; Binks BP Adv Colloid Interface Sci; 2024 Oct; 332():103274. PubMed ID: 39159542 [TBL] [Abstract][Full Text] [Related]
15. Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics. Park JS; Kim T; Kim WS Sci Rep; 2017 Jun; 7(1):3246. PubMed ID: 28607350 [TBL] [Abstract][Full Text] [Related]
17. Synthesized biocompatible and conductive ink for 3D printing of flexible electronics. Kazemzadeh Farizhandi AA; Khalajabadi SZ; Krishnadoss V; Noshadi I J Mech Behav Biomed Mater; 2020 Oct; 110():103960. PubMed ID: 32957251 [TBL] [Abstract][Full Text] [Related]
18. Printability study of metal ion crosslinked PEG-catechol based inks. Włodarczyk-Biegun MK; Paez JI; Villiou M; Feng J; Del Campo A Biofabrication; 2020 Apr; 12(3):035009. PubMed ID: 31899910 [TBL] [Abstract][Full Text] [Related]
19. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. Shahbazi M; Jäger H ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287 [TBL] [Abstract][Full Text] [Related]