BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36029750)

  • 1. Improved GAN: Using a transformer module generator approach for material decomposition.
    Wang G; Liu Z; Huang Z; Zhang N; Luo H; Liu L; Shen H; Che C; Niu T; Liang D; Luo D; Hu Z
    Comput Biol Med; 2022 Oct; 149():105952. PubMed ID: 36029750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT.
    Kawahara D; Saito A; Ozawa S; Nagata Y
    Comput Biol Med; 2021 Jan; 128():104111. PubMed ID: 33279790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Texture transformer super-resolution for low-dose computed tomography.
    Zhou S; Yu L; Jin M
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image synthesis of monoenergetic CT image in dual-energy CT using kilovoltage CT with deep convolutional generative adversarial networks.
    Kawahara D; Ozawa S; Kimura T; Nagata Y
    J Appl Clin Med Phys; 2021 Apr; 22(4):184-192. PubMed ID: 33599386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT synthesis from MR in the pelvic area using Residual Transformer Conditional GAN.
    Zhao B; Cheng T; Zhang X; Wang J; Zhu H; Zhao R; Li D; Zhang Z; Yu G
    Comput Med Imaging Graph; 2023 Jan; 103():102150. PubMed ID: 36493595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-domain material decomposition for dual-energy CT using unsupervised learning with data-fidelity loss.
    Peng J; Chang CW; Xie H; Qiu RLJ; Roper J; Wang T; Ghavidel B; Tang X; Yang X
    Med Phys; 2024 Jun; ():. PubMed ID: 38865687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image synthesis of effective atomic number images using a deep convolutional neural network-based generative adversarial network.
    Kawahara D; Ozawa S; Saito A; Nagata Y
    Rep Pract Oncol Radiother; 2022; 27(5):848-855. PubMed ID: 36523807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Innovative Low-dose CT Inpainting Algorithm based on Limited-angle Imaging Inpainting Model.
    Zhang Z; Yang M; Li H; Chen S; Wang J; Xu L
    J Xray Sci Technol; 2023; 31(1):131-152. PubMed ID: 36373341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic high-energy computed tomography image via a Wasserstein generative adversarial network with the convolutional block attention module.
    Kong H; Yuan Z; Zhou H; Liang G; Yan Z; Cheng G; Hu Z
    Quant Imaging Med Surg; 2023 Jul; 13(7):4365-4379. PubMed ID: 37456308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-energy CT material decomposition using graph model improved CNN.
    Shi Z; Kong F; Cheng M; Cao H; Ouyang S; Cao Q
    Med Biol Eng Comput; 2024 Apr; 62(4):1213-1228. PubMed ID: 38159238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy.
    Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X
    Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A nonlocal spectral similarity-induced material decomposition method for noise reduction of dual-energy CT images].
    Wang L; Wang Y; Bian Z; Ma J; Huang J
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 May; 42(5):724-732. PubMed ID: 35673917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Image-Domain Contrast Material Extraction Method for Dual-Energy Computed Tomography.
    Lambert JW; Sun Y; Gould RG; Ohliger MA; Li Z; Yeh BM
    Invest Radiol; 2017 Apr; 52(4):245-254. PubMed ID: 27875338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.