BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36029750)

  • 41. Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph.
    Lu S; Li S; Wang Y; Zhang L; Hu Y; Li B
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35100576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. X-ray image decomposition for improved magnetic navigation.
    Xia W; Xing S; Jarayathne U; Pardasani U; Peters T; Chen E
    Int J Comput Assist Radiol Surg; 2023 Jul; 18(7):1225-1233. PubMed ID: 37222930
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DIRECT-Net: A unified mutual-domain material decomposition network for quantitative dual-energy CT imaging.
    Su T; Sun X; Yang J; Mi D; Zhang Y; Wu H; Fang S; Chen Y; Zheng H; Liang D; Ge Y
    Med Phys; 2022 Feb; 49(2):917-934. PubMed ID: 34935146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pseudo low-energy monochromatic imaging of head and neck cancers: Deep learning image reconstruction with dual-energy CT.
    Koike Y; Ohira S; Teraoka Y; Matsumi A; Imai Y; Akino Y; Miyazaki M; Nakamura S; Konishi K; Tanigawa N; Ogawa K
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1271-1279. PubMed ID: 35415780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Generation of the Pseudo CT Image Based on the Deep Learning Technique Aimed for the Attenuation Correction of the PET Image].
    Fukui R; Fujii S; Ninomiya H; Fujiwara Y; Ida T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(11):1152-1162. PubMed ID: 33229845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
    Wolterink JM; Leiner T; Viergever MA; Isgum I
    IEEE Trans Med Imaging; 2017 Dec; 36(12):2536-2545. PubMed ID: 28574346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving cone-beam CT quality using a cycle-residual connection with a dilated convolution-consistent generative adversarial network.
    Deng L; Zhang M; Wang J; Huang S; Yang X
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35728794
    [No Abstract]   [Full Text] [Related]  

  • 50. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets.
    Lee D; Jeong SW; Kim SJ; Cho H; Park W; Han Y
    Med Phys; 2021 Oct; 48(10):5593-5610. PubMed ID: 34418109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feasibility study of three-material decomposition in dual-energy cone-beam CT imaging with deep learning.
    Zhu J; Su T; Zhang X; Yang J; Mi D; Zhang Y; Gao X; Zheng H; Liang D; Ge Y
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35728784
    [No Abstract]   [Full Text] [Related]  

  • 52. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients.
    Tien HJ; Yang HC; Shueng PW; Chen JC
    Sci Rep; 2021 Jan; 11(1):1133. PubMed ID: 33441936
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One half-scan dual-energy CT imaging using the Dual-domain Dual-way Estimated Network (DoDa-Net) model.
    Wang Y; Cai A; Liang N; Yu X; Zhong X; Li L; Yan B
    Quant Imaging Med Surg; 2022 Jan; 12(1):653-674. PubMed ID: 34993109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning.
    Li W; Kazemifar S; Bai T; Nguyen D; Weng Y; Li Y; Xia J; Xiong J; Xie Y; Owrangi A; Jiang S
    Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33545707
    [No Abstract]   [Full Text] [Related]  

  • 55. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images.
    Li Y; Li W; Xiong J; Xia J; Xie Y
    Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast and effective single-scan dual-energy cone-beam CT reconstruction and decomposition denoising based on dual-energy vectorization.
    Jiang X; Fang C; Hu P; Cui H; Zhu L; Yang Y
    Med Phys; 2021 Sep; 48(9):4843-4856. PubMed ID: 34289129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach.
    Kazemifar S; McGuire S; Timmerman R; Wardak Z; Nguyen D; Park Y; Jiang S; Owrangi A
    Radiother Oncol; 2019 Jul; 136():56-63. PubMed ID: 31015130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial Attention-Guided Generative Adversarial Network for Synthesizing Contrast-enhanced Computed Tomography Images.
    Yang Y; Li Y; Chen Q; Han XH; Liu J; Lin L; Hu H; Chen YW
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.