BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36029750)

  • 61. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Segmentation Guided Crossing Dual Decoding Generative Adversarial Network for Synthesizing Contrast-Enhanced Computed Tomography Images.
    Yang Y; Chen Q; Li Y; Wang F; Han XH; Iwamoto Y; Liu J; Lin L; Hu H; Chen YW
    IEEE J Biomed Health Inform; 2024 May; PP():. PubMed ID: 38768004
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples.
    Wang X; Yu Z; Wang L; Zheng P
    Oxid Med Cell Longev; 2022; 2022():2129303. PubMed ID: 35746964
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Automatic consecutive context perceived transformer GAN for serial sectioning image blind inpainting.
    Wang L; Zhang S; Gu L; Zhang J; Zhai X; Sha X; Chang S
    Comput Biol Med; 2021 Sep; 136():104751. PubMed ID: 34411901
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation.
    Tyagi S; Talbar SN
    Comput Biol Med; 2022 Aug; 147():105781. PubMed ID: 35777084
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Application of cascaded GAN based on CT scan in the diagnosis of aortic dissection.
    Chen H; Yan S; Xie M; Huang J
    Comput Methods Programs Biomed; 2022 Nov; 226():107130. PubMed ID: 36202023
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Visible-Image-Assisted Nonuniformity Correction of Infrared Images Using the GAN with SEBlock.
    Mou X; Zhu T; Zhou X
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991995
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A feature invariant generative adversarial network for head and neck MRI/CT image synthesis.
    Touati R; Le WT; Kadoury S
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33761478
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: performance and clinical feasibility.
    Dashtbani Moghari M; Zhou L; Yu B; Young N; Moore K; Evans A; Fulton RR; Kyme AZ
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33621965
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Virtual computed-tomography system for deep-learning-based material decomposition.
    Fujiwara D; Shimomura T; Zhao W; Li KW; Haga A; Geng LS
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738247
    [No Abstract]   [Full Text] [Related]  

  • 73. Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test.
    Hong KT; Cho Y; Kang CH; Ahn KS; Lee H; Kim J; Hong SJ; Kim BH; Shim E
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204619
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantitative material characterization from multi-energy photon counting CT.
    Alessio AM; MacDonald LR
    Med Phys; 2013 Mar; 40(3):031108. PubMed ID: 23464288
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A deep-learning method for generating synthetic kV-CT and improving tumor segmentation for helical tomotherapy of nasopharyngeal carcinoma.
    Chen X; Yang B; Li J; Zhu J; Ma X; Chen D; Hu Z; Men K; Dai J
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34700300
    [No Abstract]   [Full Text] [Related]  

  • 76. A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network.
    Han Z; Shangguan H; Zhang X; Zhang P; Cui X; Ren H
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):3251-3260. PubMed ID: 35239495
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network.
    Lyu T; Zhao W; Zhu Y; Wu Z; Zhang Y; Chen Y; Luo L; Li S; Xing L
    Med Image Anal; 2021 May; 70():102001. PubMed ID: 33640721
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 80. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation.
    Liu J; Yan H; Cheng H; Liu J; Sun P; Wang B; Mao R; Du C; Luo S
    Quant Imaging Med Surg; 2021 Dec; 11(12):4820-4834. PubMed ID: 34888192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.