These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36030051)
41. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells. Zhang R; Gao Z; Geng W; Yan X; Chen F; Liu Y Artif Organs; 2012 Dec; 36(12):1036-46. PubMed ID: 23020776 [TBL] [Abstract][Full Text] [Related]
42. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Liang Y; Wen L; Shang F; Wu J; Sui K; Ding Y Arch Oral Biol; 2016 Aug; 68():123-30. PubMed ID: 27131592 [TBL] [Abstract][Full Text] [Related]
43. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Chen M; Wang X; Ye Z; Zhang Y; Zhou Y; Tan WS Biomaterials; 2011 Oct; 32(30):7532-42. PubMed ID: 21774980 [TBL] [Abstract][Full Text] [Related]
44. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration Fang H; Luo C; Liu S; Zhou M; Zeng Y; Hou J; Chen L; Mou S; Sun J; Wang Z Theranostics; 2020; 10(6):2759-2772. PubMed ID: 32194833 [TBL] [Abstract][Full Text] [Related]
45. Fabrication of vascularized and scaffold-free bone tissue using endothelial and osteogenic cells differentiated from bone marrow derived mesenchymal stem cells. Xu M; Li J; Liu X; Long S; Shen Y; Li Q; Ren L; Ma D Tissue Cell; 2019 Dec; 61():21-29. PubMed ID: 31759403 [TBL] [Abstract][Full Text] [Related]
46. Mesenchymal stem cell spheroids incorporated with collagen and black phosphorus promote osteogenesis of biodegradable hydrogels. Li L; Liu X; Gaihre B; Li Y; Lu L Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111812. PubMed ID: 33579456 [TBL] [Abstract][Full Text] [Related]
47. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. Kang Y; Ren L; Yang Y ACS Appl Mater Interfaces; 2014 Jun; 6(12):9622-33. PubMed ID: 24858072 [TBL] [Abstract][Full Text] [Related]
48. Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells. Domev H; Amit M; Laevsky I; Dar A; Itskovitz-Eldor J Tissue Eng Part A; 2012 Nov; 18(21-22):2290-302. PubMed ID: 22731654 [TBL] [Abstract][Full Text] [Related]
50. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
51. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). E LL; Cheng T; Li CJ; Zhang R; Zhang S; Liu HC; Zheng WJ Stem Cells Dev; 2020 Sep; 29(18):1215-1228. PubMed ID: 32674666 [TBL] [Abstract][Full Text] [Related]
52. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect. Zhang J; Shi H; Zhang N; Hu L; Jing W; Pan J Cell Prolif; 2020 Oct; 53(10):e12907. PubMed ID: 32951298 [TBL] [Abstract][Full Text] [Related]
53. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of viable and functional pre-vascularized modular bone tissues by coculturing MSCs and HUVECs on microcarriers in spinner flasks. Zhang S; Zhou M; Ye Z; Zhou Y; Tan WS Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28544815 [TBL] [Abstract][Full Text] [Related]
55. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908 [TBL] [Abstract][Full Text] [Related]
56. Dual 3D printing for vascularized bone tissue regeneration. Hann SY; Cui H; Esworthy T; Zhou X; Lee SJ; Plesniak MW; Zhang LG Acta Biomater; 2021 Mar; 123():263-274. PubMed ID: 33454383 [TBL] [Abstract][Full Text] [Related]
57. Angiogenic and Osteogenic Synergy of Human Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured on a Nanomatrix. Chen J; Deng L; Porter C; Alexander G; Patel D; Vines J; Zhang X; Chasteen-Boyd D; Sung HJ; Li YP; Javed A; Gilbert S; Cheon K; Jun HW Sci Rep; 2018 Oct; 8(1):15749. PubMed ID: 30356078 [TBL] [Abstract][Full Text] [Related]
58. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612 [TBL] [Abstract][Full Text] [Related]
59. Aspiration-assisted freeform bioprinting of mesenchymal stem cell spheroids within alginate microgels. Kim MH; Banerjee D; Celik N; Ozbolat IT Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062000 [TBL] [Abstract][Full Text] [Related]
60. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Mende W; Götzl R; Kubo Y; Pufe T; Ruhl T; Beier JP Cells; 2021 Apr; 10(5):. PubMed ID: 33919377 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]