These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36031086)

  • 1. Rich learning representations for human activity recognition: How to empower deep feature learning for biological time series.
    Kanjilal R; Uysal I
    J Biomed Inform; 2022 Oct; 134():104180. PubMed ID: 36031086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination.
    Akter M; Ansary S; Khan MA; Kim D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacked deep analytic model for human activity recognition on a UCI HAR database.
    Pang YH; Ping LY; Ling GF; Yin OS; How KW
    F1000Res; 2021; 10():1046. PubMed ID: 35360410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition.
    Mekruksavanich S; Jitpattanakul A
    Sci Rep; 2023 Jul; 13(1):12067. PubMed ID: 37495634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors.
    Huang W; Zhang L; Teng Q; Song C; He J
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSTCN: A multiscale temporal convolutional network for user independent human activity recognition.
    Raja Sekaran S; Pang YH; Ling GF; Yin OS
    F1000Res; 2021; 10():1261. PubMed ID: 36896393
    [No Abstract]   [Full Text] [Related]  

  • 9. STC-NLSTMNet: An Improved Human Activity Recognition Method Using Convolutional Neural Network with NLSTM from WiFi CSI.
    Islam MS; Jannat MKA; Hossain MN; Kim WS; Lee SW; Yang SH
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multimodal Fusion Approach for Human Activity Recognition.
    Koutrintzes D; Spyrou E; Mathe E; Mylonas P
    Int J Neural Syst; 2023 Jan; 33(1):2350002. PubMed ID: 36573880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAG-Res2Net: a novel deep learning network for human activity recognition.
    Liu H; Zhao B; Dai C; Sun B; Li A; Wang Z
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37939391
    [No Abstract]   [Full Text] [Related]  

  • 13. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical multi-view aggregation network for sensor-based human activity recognition.
    Zhang X; Wong Y; Kankanhalli MS; Geng W
    PLoS One; 2019; 14(9):e0221390. PubMed ID: 31513592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Activity Recognition in the Presence of Occlusion.
    Vernikos I; Spyropoulos T; Spyrou E; Mylonas P
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.
    Nafea O; Abdul W; Muhammad G; Alsulaiman M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D Deconvolutional Networks for the Unsupervised Representation Learning of Human Motions.
    Zhang CY; Xiao YY; Lin JC; Chen CLP; Liu W; Tong YH
    IEEE Trans Cybern; 2022 Jan; 52(1):398-410. PubMed ID: 32149670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Action Recognition and Note Recognition: A Deep Learning Approach Using STA-GCN.
    Enkhbat A; Shih TK; Cheewaprakobkit P
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.