BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36031217)

  • 1. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria.
    Ruthsatz K; Bartels F; Stützer D; Eterovick PC
    J Therm Biol; 2022 Aug; 108():103296. PubMed ID: 36031217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic costs of altered growth trajectories across life transitions in amphibians.
    Burraco P; Valdés AE; Orizaola G
    J Anim Ecol; 2020 Mar; 89(3):855-866. PubMed ID: 31693168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of water-borne corticosterone as one non-invasive biomarker in assessing nitrate pollution stress in tadpoles of Rana temporaria.
    Ruthsatz K; Eterovick PC; Bartels F; Mausbach J
    Gen Comp Endocrinol; 2023 Jan; 331():114164. PubMed ID: 36400158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria.
    Ruthsatz K; Dausmann KH; Reinhardt S; Robinson T; Sabatino NM; Peck MA; Glos J
    J Comp Physiol B; 2020 May; 190(3):297-315. PubMed ID: 32144506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.
    Benard MF
    Glob Chang Biol; 2015 Mar; 21(3):1058-65. PubMed ID: 25263760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphibian breeding phenology influences offspring size and response to a common wetland contaminant.
    Buss N; Swierk L; Hua J
    Front Zool; 2021 Jun; 18(1):31. PubMed ID: 34172063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the common frog (
    Ruthsatz K; Dausmann KH; Paesler K; Babos P; Sabatino NM; Peck MA; Glos J
    Conserv Physiol; 2020; 8(1):coaa100. PubMed ID: 33343902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of nitrate tolerance between different populations of the common frog, Rana temporaria.
    Johansson M; Räsänen K; Merilä J
    Aquat Toxicol; 2001 Sep; 54(1-2):1-14. PubMed ID: 11451421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny.
    Ruthsatz K; Dausmann KH; Peck MA; Glos J
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):477-490. PubMed ID: 35226414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses.
    Orizaola G; Richter-Boix A; Laurila A
    Ecology; 2016 Sep; 97(9):2470-2478. PubMed ID: 27859081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endocrine Disruption Alters Developmental Energy Allocation and Performance in Rana temporaria.
    Ruthsatz K; Dausmann KH; Reinhardt S; Robinson T; Sabatino NM; Peck MA; Glos J
    Integr Comp Biol; 2019 Jul; 59(1):70-88. PubMed ID: 31095322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population and life-stage-specific effects of two herbicide formulations on the aquatic development of European common frogs (Rana temporaria).
    Wagner N; Veith M; Lötters S; Viertel B
    Environ Toxicol Chem; 2017 Jan; 36(1):190-200. PubMed ID: 27291460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. European common frog Rana temporaria (Anura: Ranidae) larvae show subcellular responses under field-relevant Bacillus thuringiensis var. israelensis (Bti) exposure levels.
    Allgeier S; Frombold B; Mingo V; Brühl CA
    Environ Res; 2018 Apr; 162():271-279. PubMed ID: 29407758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nitrate and ammonium on larvae of Rana temporaria from the Pyrenees.
    Oromí N; Sanuy D; Vilches M
    Bull Environ Contam Toxicol; 2009 May; 82(5):534-7. PubMed ID: 19238302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria.
    Johansson F; Lederer B; Lind MI
    PLoS One; 2010 Jul; 5(7):e11680. PubMed ID: 20657779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carry-over effects of ultraviolet-B radiation on larval fitness in Rana temporaria.
    Pahkala M; Laurila A; Merilä J
    Proc Biol Sci; 2001 Aug; 268(1477):1699-706. PubMed ID: 11506683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Heat waves" experienced during larval life have species-specific consequences on life-history traits and sexual development in anuran amphibians.
    Ujszegi J; Bertalan R; Ujhegyi N; Verebélyi V; Nemesházi E; Mikó Z; Kásler A; Herczeg D; Szederkényi M; Vili N; Gál Z; Hoffmann OI; Bókony V; Hettyey A
    Sci Total Environ; 2022 Aug; 835():155297. PubMed ID: 35439501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered thyroid hormone levels affect the capacity for temperature-induced developmental plasticity in larvae of Rana temporaria and Xenopus laevis.
    Ruthsatz K; Dausmann KH; Drees C; Becker LI; Hartmann L; Reese J; Reinhardt S; Robinson T; Sabatino NM; Peck MA; Glos J
    J Therm Biol; 2020 May; 90():102599. PubMed ID: 32479394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian.
    Murillo-Rincón AP; Kolter NA; Laurila A; Orizaola G
    J Anim Ecol; 2017 Jan; 86(1):128-135. PubMed ID: 27779740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larval life history and anti-predator strategies are affected by breeding phenology in an amphibian.
    Orizaola G; Dahl E; Nicieza AG; Laurila A
    Oecologia; 2013 Apr; 171(4):873-81. PubMed ID: 22976774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.