These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 36031456)
1. Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety. Xu S; Wu Q; He B; Rao J; Chow DHK; Xu J; Wang X; Sun Y; Ning C; Dai K Biomaterials; 2022 Sep; 288():121751. PubMed ID: 36031456 [TBL] [Abstract][Full Text] [Related]
2. Complementary and synergistic effects on osteogenic and angiogenic properties of copper-incorporated silicocarnotite bioceramic: In vitro and in vivo studies. Wu Q; Xu S; Wang X; Jia B; Han Y; Zhuang Y; Sun Y; Sun Z; Guo Y; Kou H; Ning C; Dai K Biomaterials; 2021 Jan; 268():120553. PubMed ID: 33253963 [TBL] [Abstract][Full Text] [Related]
3. Ferric oxide: A favorable additive to balance mechanical strength and biological activity of silicocarnotite bioceramic. Deng F; Rao J; Ning C J Mech Behav Biomed Mater; 2020 Sep; 109():103819. PubMed ID: 32543394 [TBL] [Abstract][Full Text] [Related]
4. Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity. Xu S; Wu Q; Guo Y; Ning C; Dai K Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111493. PubMed ID: 33255060 [TBL] [Abstract][Full Text] [Related]
5. Ultrasound-assisted synthesis of nanocrystallized silicocarnotite biomaterial with improved sinterability and osteogenic activity. Xu S; Wu Q; Wu J; Kou H; Zhu Y; Ning C; Dai K J Mater Chem B; 2020 Apr; 8(15):3092-3103. PubMed ID: 32207759 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Lu B; Zhu DY; Yin JH; Xu H; Zhang CQ; Ke QF; Gao YS; Guo YP Biofabrication; 2019 Mar; 11(2):025012. PubMed ID: 30754024 [TBL] [Abstract][Full Text] [Related]
7. Development of osteogenic chitosan/alginate scaffolds reinforced with silicocarnotite containing apatitic fibers. Karimi M; Mesgar AS; Mohammadi Z Biomed Mater; 2020 Aug; 15(5):055020. PubMed ID: 32438355 [TBL] [Abstract][Full Text] [Related]
8. Surface-Decorated Graphene Oxide Sheets with Copper Nanoderivatives for Bone Regeneration: An Yang Y; Li M; Luo H; Zhang D ACS Infect Dis; 2022 Mar; 8(3):499-515. PubMed ID: 35188739 [TBL] [Abstract][Full Text] [Related]
9. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite. Duan W; Ning C; Tang T J Biomed Mater Res A; 2013 Jul; 101(7):1955-61. PubMed ID: 23225789 [TBL] [Abstract][Full Text] [Related]
10. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity. Gomes S; Vichery C; Descamps S; Martinez H; Kaur A; Jacobs A; Nedelec JM; Renaudin G Acta Biomater; 2018 Jan; 65():462-474. PubMed ID: 29066420 [TBL] [Abstract][Full Text] [Related]
11. Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials. Behera M; Rajput M; Acharya S; Nadammal N; Suwas S; Chatterjee K Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34030150 [TBL] [Abstract][Full Text] [Related]
12. Comparison of green bio-based cerium/alginate vs. copper/alginate beads: a study of vibrational and thermal properties using experimental and theoretical methods. Elhoudi M; Oukhrib R; A Celaya C; G Araiza D; Abdellaoui Y; Barra I; Brahmi Y; Bourzi H; Reina M; Albourine A; Abou Oualid H J Mol Model; 2022 Jan; 28(2):37. PubMed ID: 35034209 [TBL] [Abstract][Full Text] [Related]
13. Cerium (III) and (IV) containing mesoporous glasses/alginate beads for bone regeneration: Bioactivity, biocompatibility and reactive oxygen species activity. Varini E; Sánchez-Salcedo S; Malavasi G; Lusvardi G; Vallet-Regí M; Salinas AJ Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109971. PubMed ID: 31546454 [TBL] [Abstract][Full Text] [Related]
14. Distinct mechanisms of iron and zinc metal ions on osteo-immunomodulation of silicocarnotite bioceramics. Deng F; Han X; Ji Y; Jin Y; Shao Y; Zhang J; Ning C Mater Today Bio; 2024 Jun; 26():101086. PubMed ID: 38765245 [TBL] [Abstract][Full Text] [Related]
15. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Dashnyam K; Buitrago JO; Bold T; Mandakhbayar N; Perez RA; Knowles JC; Lee JH; Kim HW Biomater Sci; 2019 Nov; 7(12):5221-5231. PubMed ID: 31595890 [TBL] [Abstract][Full Text] [Related]
16. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair. Li Y; Wang J; Wang Y; Du W; Wang S J Biomater Appl; 2018 Jan; 32(6):738-753. PubMed ID: 29295641 [TBL] [Abstract][Full Text] [Related]
17. Harnessing cerium-based biomaterials for the treatment of bone diseases. Meng X; Wang WD; Li SR; Sun ZJ; Zhang L Acta Biomater; 2024 Jul; 183():30-49. PubMed ID: 38849022 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
19. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions. Zhang J; Wu H; He F; Wu T; Zhou L; Ye J Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1199-1212. PubMed ID: 30889654 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]