These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36031834)

  • 1. Mechanics of pressurized planar hyperelastic membranes.
    Selvadurai APS
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210319. PubMed ID: 36031834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrinkling and restabilization of a hyperelastic PDMS membrane at finite strain.
    Yang E; Zhang M; Zeng J; Tian F
    Soft Matter; 2022 Jul; 18(29):5465-5473. PubMed ID: 35822864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review.
    Wex C; Arndt S; Stoll A; Bruns C; Kupriyanova Y
    Biomed Tech (Berl); 2015 Dec; 60(6):577-92. PubMed ID: 26087063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcation analysis of residually stressed neo-Hookean and Ogden electroelastic tubes.
    Melnikov A; Merodio J; Bustamante R; Dorfmann L
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210331. PubMed ID: 36031836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized Ogden model for the compressibility of rubber-like solids.
    Yao Y; Chen S; Huang Z
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210320. PubMed ID: 36031837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues.
    Seshaiyer P; Humphrey JD
    J Biomech Eng; 2003 Jun; 125(3):363-71. PubMed ID: 12929241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
    Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques.
    Teng Z; Yuan J; Feng J; Zhang Y; Brown AJ; Wang S; Lu Q; Gillard JH
    J Biomech; 2015 Nov; 48(14):3912-21. PubMed ID: 26472305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of hyperelastic constitutive models applicable to brain and fat tissues.
    Mihai LA; Chin L; Janmey PA; Goriely A
    J R Soc Interface; 2015 Sep; 12(110):0486. PubMed ID: 26354826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperelastic antiplane ground cloaking.
    Zhang P; Parnell WJ
    J Acoust Soc Am; 2018 May; 143(5):2878. PubMed ID: 29857758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized bulging of an inflated rubber tube with fixed ends.
    Guo Z; Wang S; Fu Y
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210318. PubMed ID: 36031833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials.
    Cheng J; Zhang LT
    Int J Comput Methods; 2018 Jun; 15(1):. PubMed ID: 30774174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Uniaxial Stress-Strain Relationship of Hyperelastic Material Models of Rubber Cracks in the Platens of Papermaking Machines Based on Nonlinear Strain and Stress Measurements with the Finite Element Method.
    Nguyen HD; Huang SC
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of hyperelastic constitutive models applicable to shear wave elastography (SWE) data in tissue-mimicking materials.
    Rosen DP; Jiang J
    Phys Med Biol; 2019 Mar; 64(5):055014. PubMed ID: 30673637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage.
    Brown CP; Nguyen TC; Moody HR; Crawford RW; Oloyede A
    Proc Inst Mech Eng H; 2009 Aug; 223(6):643-52. PubMed ID: 19743631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity.
    Destrade M; Dorfmann L; Saccomandi G
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210332. PubMed ID: 36031839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modelling of the mechanical behaviour of protein-based hydrogels.
    Pérez-Benito Á; Huerta-López C; Alegre-Cebollada J; García-Aznar JM; Hervas-Raluy S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105661. PubMed ID: 36630754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations on Ogden's model: close and distant relatives.
    Ehret AE; Stracuzzi A
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210322. PubMed ID: 36031841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.