These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36031837)

  • 1. A generalized Ogden model for the compressibility of rubber-like solids.
    Yao Y; Chen S; Huang Z
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210320. PubMed ID: 36031837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ogden-like formulation incorporating phase-field fracture in elastomers: from brittle to pseudo-ductile failures.
    Ciambella J; Lancioni G; Stortini N
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210323. PubMed ID: 36031842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ogden and the extended tube model as backbone in describing electroactive polymers: advancements in modelling nonlinear behaviour and fracture.
    Kaliske M; Storm J; Kanan A; Klausler W
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210329. PubMed ID: 36031832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity.
    Destrade M; Dorfmann L; Saccomandi G
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210332. PubMed ID: 36031839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for the auxetic response of liquid crystal elastomers.
    Mihai LA; Mistry D; Raistrick T; Gleeson HF; Goriely A
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210326. PubMed ID: 36031830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling brain tissue elasticity with the Ogden model and an alternative family of constitutive models
    Anssari-Benam A; Destrade M; Saccomandi G
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210325. PubMed ID: 36031829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exponents of the one-term Ogden model: insights from simple shear.
    Horgan CO; Murphy JG
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210328. PubMed ID: 36031831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations.
    Lohr MJ; Sugerman GP; Kakaletsis S; Lejeune E; Rausch MK
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210365. PubMed ID: 36031838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of pressurized planar hyperelastic membranes.
    Selvadurai APS
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210319. PubMed ID: 36031834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States.
    Fu X; Wang Z; Ma L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of an electric field on the bifurcation of a biaxially stretched incompressible slab rubber.
    Díaz-Calleja R; Sanchis MJ; Riande E
    Eur Phys J E Soft Matter; 2009 Dec; 30(4):417-26. PubMed ID: 20013020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ogden material calibration via magnetic resonance cartography, parameter sensitivity and variational system identification.
    Nikolov DP; Srivastava S; Abeid BA; Scheven UM; Arruda EM; Garikipati K; Estrada JB
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210324. PubMed ID: 36031828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyper-Pseudo-Viscoelastic Model and Parameter Identification for Describing Tensile Recovery Stress-Strain Responses of Rubber Components in TBR.
    Pan G; Chen M; Wang Y; Zhang J; Liu L; Zhang L; Li F
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcation analysis of residually stressed neo-Hookean and Ogden electroelastic tubes.
    Melnikov A; Merodio J; Bustamante R; Dorfmann L
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210331. PubMed ID: 36031836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations on Ogden's model: close and distant relatives.
    Ehret AE; Stracuzzi A
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210322. PubMed ID: 36031841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of incompressible cylinder rubber tubes under radial electric fields.
    Díaz-Calleja R; Sanchis MJ; Riande E
    Eur Phys J E Soft Matter; 2010 Jun; 32(2):183-90. PubMed ID: 20607340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized bulging of an inflated rubber tube with fixed ends.
    Guo Z; Wang S; Fu Y
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210318. PubMed ID: 36031833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extremal states and coupling properties in electroelasticity.
    Menzel A; Witt C
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210330. PubMed ID: 36031835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.