BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 36031954)

  • 1. Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: A multifactorial microfluidic study.
    Chun ALM; Mosayyebi A; Butt A; Carugo D; Salta M
    Microbiologyopen; 2022 Aug; 11(4):e1310. PubMed ID: 36031954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multichannel Microfluidic Platform for Temporal-Spatial Investigation of Niche Roles of Pseudomonas aeruginosa and Escherichia coli within a Dual-Species Biofilm.
    Cheah H; Bae S
    Appl Environ Microbiol; 2023 Jul; 89(7):e0065123. PubMed ID: 37382537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels.
    Wang X; Hao M; Du X; Wang G; Matsushita J
    Comput Math Methods Med; 2016; 2016():7819403. PubMed ID: 27313658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
    Savorana G; Słomka J; Stocker R; Rusconi R; Secchi E
    Soft Matter; 2022 May; 18(20):3878-3890. PubMed ID: 35535650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm streamer growth dynamics in various microfluidic channels.
    Zhang J; Dong F; Liu S; Zhang D; Wang X
    Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural role of bacterial eDNA in the formation of biofilm streamers.
    Secchi E; Savorana G; Vitale A; Eberl L; Stocker R; Rusconi R
    Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2113723119. PubMed ID: 35290120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminar flow around corners triggers the formation of biofilm streamers.
    Rusconi R; Lecuyer S; Guglielmini L; Stone HA
    J R Soc Interface; 2010 Sep; 7(50):1293-9. PubMed ID: 20356880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibiofilm Properties of Temporin-L on
    Di Somma A; Recupido F; Cirillo A; Romano A; Romanelli A; Caserta S; Guido S; Duilio A
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of surface adhesion on the macroscopic wrinkling of biofilms.
    Geisel S; Secchi E; Vermant J
    Elife; 2022 Jun; 11():. PubMed ID: 35723588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp.
    Zarabadi MP; Paquet-Mercier F; Charette SJ; Greener J
    Langmuir; 2017 Feb; 33(8):2041-2049. PubMed ID: 28147485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions.
    Zhu Y; McHale G; Dawson J; Armstrong S; Wells G; Han R; Liu H; Vollmer W; Stoodley P; Jakubovics N; Chen J
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6307-6319. PubMed ID: 35099179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of air relative humidity on the wettability of Pseudomonas fluorescens AR11 biofilms.
    Marra D; Orillo E; Toscano G; Petala M; Karapantsios TD; Caserta S
    Colloids Surf B Biointerfaces; 2024 May; 237():113831. PubMed ID: 38508084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ detection based on the biofilm hydrophilicity for environmental biofilm formation.
    Tanaka N; Kogo T; Hirai N; Ogawa A; Kanematsu H; Takahara J; Awazu A; Fujita N; Haruzono Y; Ichida S; Tanaka Y
    Sci Rep; 2019 May; 9(1):8070. PubMed ID: 31147580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV stabilizers can foster early development of biofilms on freshwater microplastics.
    Tarafdar A; Lim JY; Kwon JH
    Environ Pollut; 2022 Dec; 315():120444. PubMed ID: 36265727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.
    Hou J; Veeregowda DH; van de Belt-Gritter B; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for characterizing the co-development of biofilm and habitat heterogeneity.
    Li X; Song JL; Culotti A; Zhang W; Chopp DL; Lu N; Packman AI
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution.
    Wang L; Keatch R; Zhao Q; Wright JA; Bryant CE; Redmann AL; Terentjev EM
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluidic resistance control enables high-throughput establishment of mixed-species biofilms.
    Hansen MF; Torp AM; Madsen JS; Røder HL; Burmølle M
    Biotechniques; 2019 May; 66(5):235-239. PubMed ID: 31050304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms.
    Salek MM; Jones SM; Martinuzzi RJ
    Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.