These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36031954)
1. Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: A multifactorial microfluidic study. Chun ALM; Mosayyebi A; Butt A; Carugo D; Salta M Microbiologyopen; 2022 Aug; 11(4):e1310. PubMed ID: 36031954 [TBL] [Abstract][Full Text] [Related]
2. Multichannel Microfluidic Platform for Temporal-Spatial Investigation of Niche Roles of Pseudomonas aeruginosa and Escherichia coli within a Dual-Species Biofilm. Cheah H; Bae S Appl Environ Microbiol; 2023 Jul; 89(7):e0065123. PubMed ID: 37382537 [TBL] [Abstract][Full Text] [Related]
3. Biofilm streamer growth dynamics in various microfluidic channels. Zhang J; Dong F; Liu S; Zhang D; Wang X Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043 [TBL] [Abstract][Full Text] [Related]
4. The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels. Wang X; Hao M; Du X; Wang G; Matsushita J Comput Math Methods Med; 2016; 2016():7819403. PubMed ID: 27313658 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic platform for characterizing the structure and rheology of biofilm streamers. Savorana G; Słomka J; Stocker R; Rusconi R; Secchi E Soft Matter; 2022 May; 18(20):3878-3890. PubMed ID: 35535650 [TBL] [Abstract][Full Text] [Related]
6. The structural role of bacterial eDNA in the formation of biofilm streamers. Secchi E; Savorana G; Vitale A; Eberl L; Stocker R; Rusconi R Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2113723119. PubMed ID: 35290120 [TBL] [Abstract][Full Text] [Related]
7. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth. Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289 [TBL] [Abstract][Full Text] [Related]
8. Laminar flow around corners triggers the formation of biofilm streamers. Rusconi R; Lecuyer S; Guglielmini L; Stone HA J R Soc Interface; 2010 Sep; 7(50):1293-9. PubMed ID: 20356880 [TBL] [Abstract][Full Text] [Related]
9. The role of surface adhesion on the macroscopic wrinkling of biofilms. Geisel S; Secchi E; Vermant J Elife; 2022 Jun; 11():. PubMed ID: 35723588 [TBL] [Abstract][Full Text] [Related]
10. Antibiofilm Properties of Temporin-L on Di Somma A; Recupido F; Cirillo A; Romano A; Romanelli A; Caserta S; Guido S; Duilio A Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198325 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp. Zarabadi MP; Paquet-Mercier F; Charette SJ; Greener J Langmuir; 2017 Feb; 33(8):2041-2049. PubMed ID: 28147485 [TBL] [Abstract][Full Text] [Related]
12. The role of air relative humidity on the wettability of Pseudomonas fluorescens AR11 biofilms. Marra D; Orillo E; Toscano G; Petala M; Karapantsios TD; Caserta S Colloids Surf B Biointerfaces; 2024 May; 237():113831. PubMed ID: 38508084 [TBL] [Abstract][Full Text] [Related]
13. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. Zhu Y; McHale G; Dawson J; Armstrong S; Wells G; Han R; Liu H; Vollmer W; Stoodley P; Jakubovics N; Chen J ACS Appl Mater Interfaces; 2022 Feb; 14(5):6307-6319. PubMed ID: 35099179 [TBL] [Abstract][Full Text] [Related]
14. In-situ detection based on the biofilm hydrophilicity for environmental biofilm formation. Tanaka N; Kogo T; Hirai N; Ogawa A; Kanematsu H; Takahara J; Awazu A; Fujita N; Haruzono Y; Ichida S; Tanaka Y Sci Rep; 2019 May; 9(1):8070. PubMed ID: 31147580 [TBL] [Abstract][Full Text] [Related]
15. Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution. Wang L; Keatch R; Zhao Q; Wright JA; Bryant CE; Redmann AL; Terentjev EM Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330179 [TBL] [Abstract][Full Text] [Related]
16. Methods for characterizing the co-development of biofilm and habitat heterogeneity. Li X; Song JL; Culotti A; Zhang W; Chopp DL; Lu N; Packman AI J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866914 [TBL] [Abstract][Full Text] [Related]
17. UV stabilizers can foster early development of biofilms on freshwater microplastics. Tarafdar A; Lim JY; Kwon JH Environ Pollut; 2022 Dec; 315():120444. PubMed ID: 36265727 [TBL] [Abstract][Full Text] [Related]
18. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms. Hou J; Veeregowda DH; van de Belt-Gritter B; Busscher HJ; van der Mei HC Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054874 [TBL] [Abstract][Full Text] [Related]
19. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms. Salek MM; Jones SM; Martinuzzi RJ Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneity in surface sensing suggests a division of labor in Armbruster CR; Lee CK; Parker-Gilham J; de Anda J; Xia A; Zhao K; Murakami K; Tseng BS; Hoffman LR; Jin F; Harwood CS; Wong GC; Parsek MR Elife; 2019 Jun; 8():. PubMed ID: 31180327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]