BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36032531)

  • 1. Suppressing the Excitonic Effect in Covalent Organic Frameworks for Metal-Free Hydrogen Generation.
    Yu H; Wang D
    JACS Au; 2022 Aug; 2(8):1848-1856. PubMed ID: 36032531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enaminone-Linked Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Production.
    Guan X; Qian Y; Zhang X; Jiang HL
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306135. PubMed ID: 37255487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks.
    Ghosh S; Nakada A; Springer MA; Kawaguchi T; Suzuki K; Kaji H; Baburin I; Kuc A; Heine T; Suzuki H; Abe R; Seki S
    J Am Chem Soc; 2020 May; 142(21):9752-9762. PubMed ID: 32352795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent Organic Frameworks as Porous Pigments for Photocatalytic Metal-Free C-H Borylation.
    Basak A; Karak S; Banerjee R
    J Am Chem Soc; 2023 Apr; 145(13):7592-7599. PubMed ID: 36943195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar-to-H
    Yong Z; Ma T
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202308980. PubMed ID: 37574706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectron Migration Boosted by Hollow Double-Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation.
    Wang M; Lv H; Dong B; He W; Yuan D; Wang X; Wang R
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202401969. PubMed ID: 38372671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band Gap Engineering in Vinylene-Linked Covalent Organic Frameworks for Enhanced Photocatalytic Degradation of Organic Contaminants and Disinfection of Bacteria.
    Chen XR; Cui WR; Liang RP; Zhang CR; Xu RH; Jiang W; Qiu JD
    ACS Appl Bio Mater; 2021 Aug; 4(8):6502-6511. PubMed ID: 35006884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances on covalent organic frameworks (COFs) as photocatalysts: different strategies for enhancing hydrogen generation.
    Gu CC; Xu FH; Zhu WK; Wu RJ; Deng L; Zou J; Weng BC; Zhu RL
    Chem Commun (Camb); 2023 Jun; 59(48):7302-7320. PubMed ID: 37221919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants.
    Hou Y; Liu F; Nie C; Li Z; Tong M
    Environ Sci Technol; 2023 Aug; 57(31):11675-11686. PubMed ID: 37486062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production.
    Verma P; Le Brocq JJM; Raja R
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization.
    Wang Y; Zhao Y; Li Z
    Macromol Rapid Commun; 2022 Aug; 43(16):e2200108. PubMed ID: 35477941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Reactive Oxygen Species Generation by Regulating Excitonic Effects in Porphyrinic Covalent Organic Frameworks.
    Yu G; Li W; Gao H; Zhang M; Guo Y; Chen S
    J Phys Chem Lett; 2022 Mar; 13(12):2814-2823. PubMed ID: 35319207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot Synthesis of Metal-coordinated Covalent Organic Frameworks for Enhanced CO
    Xue H; Yin C; Xiong S; Yang J; Wang Y
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalysts for Visible Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide.
    Singh N; Yadav D; Mulay SV; Kim JY; Park NJ; Baeg JO
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14122-14131. PubMed ID: 33733735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence laws of air gap structure manipulation of covalent organic frameworks on dielectric properties and exciton effects for photopolymerization.
    Yang H; Lu Z; Yin X; Wu S; Hou L
    Chem Sci; 2023 Aug; 14(30):8095-8102. PubMed ID: 37538822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the influence of hydrophobicity on inhibiting hydrogen dissociation for enhanced photocatalytic hydrogen evolution of covalent organic frameworks.
    Fan X; Song X; Zhang Y; Li Z
    J Colloid Interface Sci; 2024 Jun; 673():836-846. PubMed ID: 38908283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent Organic Frameworks for Energy Conversion in Photocatalysis.
    He T; Zhao Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202303086. PubMed ID: 37093128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and Perspectives on Covalent-Organic Frameworks (COFs) and Composites for Various Energy Applications.
    Kumar R; Naz Ansari S; Deka R; Kumar P; Saraf M; Mobin SM
    Chemistry; 2021 Oct; 27(55):13669-13698. PubMed ID: 34288163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd nanoparticle-decorated covalent organic frameworks for enhanced photocatalytic tetracycline hydrochloride degradation and hydrogen evolution.
    Xu F; Liang B; Liu L; Hu X; Weng B
    Chem Commun (Camb); 2023 May; 59(42):6387-6390. PubMed ID: 37157983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.