BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36032531)

  • 41. Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis.
    Wang H; Qian C; Liu J; Zeng Y; Wang D; Zhou W; Gu L; Wu H; Liu G; Zhao Y
    J Am Chem Soc; 2020 Mar; 142(10):4862-4871. PubMed ID: 32073853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transformation of Covalent Organic Frameworks from N-Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis.
    Yang S; Lv H; Zhong H; Yuan D; Wang X; Wang R
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202115655. PubMed ID: 34962043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation.
    Vyas VS; Haase F; Stegbauer L; Savasci G; Podjaski F; Ochsenfeld C; Lotsch BV
    Nat Commun; 2015 Sep; 6():8508. PubMed ID: 26419805
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cobalt-Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Units as Photocatalysts for Carbon Dioxide Reduction.
    Kim YH; Jeon JP; Kim Y; Noh HJ; Seo JM; Kim J; Lee G; Baek JB
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202307991. PubMed ID: 37448236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low Band Gap Benzoxazole-Linked Covalent Organic Frameworks for Photo-Enhanced Targeted Uranium Recovery.
    Cui WR; Zhang CR; Xu RH; Chen XR; Yan RH; Jiang W; Liang RP; Qiu JD
    Small; 2021 Feb; 17(6):e2006882. PubMed ID: 33470524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-Free Magnetism in Chemically Doped Covalent Organic Frameworks.
    Yu H; Wang D
    J Am Chem Soc; 2020 Jun; 142(25):11013-11021. PubMed ID: 32423206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts.
    Zhi Y; Wang Z; Zhang HL; Zhang Q
    Small; 2020 Jun; 16(24):e2001070. PubMed ID: 32419332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations.
    Liu H; Li C; Li H; Ren Y; Chen J; Tang J; Yang Q
    ACS Appl Mater Interfaces; 2020 May; 12(18):20354-20365. PubMed ID: 32272831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoenzymatic CO
    Chen Q; Wang Y; Luo G
    J Am Chem Soc; 2024 Jan; 146(1):586-598. PubMed ID: 38109499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks.
    Qian Y; Li D; Han Y; Jiang HL
    J Am Chem Soc; 2020 Dec; 142(49):20763-20771. PubMed ID: 33226795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis.
    Wei PF; Qi MZ; Wang ZP; Ding SY; Yu W; Liu Q; Wang LK; Wang HZ; An WK; Wang W
    J Am Chem Soc; 2018 Apr; 140(13):4623-4631. PubMed ID: 29584421
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrating Covalent Organic Framework with Transition Metal Phosphide for Noble-Metal-Free Visible-Light-Driven Photocatalytic H
    Yan G; Sun X; Zhang K; Zhang Y; Li H; Dou Y; Yuan D; Huang H; Jia B; Li H; Ma T
    Small; 2022 Jun; 18(25):e2201340. PubMed ID: 35612000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyarylether-Based 2D Covalent-Organic Frameworks with In-Plane D-A Structures and Tunable Energy Levels for Energy Storage.
    Li N; Jiang K; Rodríguez-Hernández F; Mao H; Han S; Fu X; Zhang J; Yang C; Ke C; Zhuang X
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104898. PubMed ID: 34957678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation.
    Yan X; Lyu S; Xu XQ; Chen W; Shang P; Yang Z; Zhang G; Chen W; Wang Y; Chen L
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202201900. PubMed ID: 35235246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenothiazine-based covalent organic frameworks with low exciton binding energies for photocatalysis.
    Wang W; Wang H; Tang X; Huo J; Su Y; Lu C; Zhang Y; Xu H; Gu C
    Chem Sci; 2022 Jul; 13(29):8679-8685. PubMed ID: 35974752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metallated Isoindigo-Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO
    Skorjanc T; Shetty D; Mahmoud ME; Gándara F; Martinez JI; Mohammed AK; Boutros S; Merhi A; Shehayeb EO; Sharabati CA; Damacet P; Raya J; Gardonio S; Hmadeh M; Kaafarani BR; Trabolsi A
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2015-2022. PubMed ID: 34931799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis.
    Niu L; Zhao X; Wu F; Tang Z; Lv H; Wang J; Fang M; Giesy JP
    Sci Total Environ; 2021 Aug; 783():146838. PubMed ID: 33865146
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution.
    Li Y; Song X; Zhang G; Wang L; Liu Y; Chen W; Chen L
    ChemSusChem; 2022 Aug; 15(15):e202200901. PubMed ID: 35652127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Covalent Organic Frameworks for Chemical and Biological Sensing.
    Zhang S; Liu D; Wang G
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.