These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36032531)

  • 61. Bromine Atoms Decorated Pyene-based Covalent Organic Frameworks for Accelerated Photocatalytic H
    Deng X; Gao N; Bai L
    Small; 2024 Mar; ():e2311927. PubMed ID: 38429244
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting.
    Yang Y; Chu X; Zhang HY; Zhang R; Liu YH; Zhang FM; Lu M; Yang ZD; Lan YQ
    Nat Commun; 2023 Feb; 14(1):593. PubMed ID: 36737616
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Construction of Covalent-Organic Frameworks (COFs) from Amorphous Covalent Organic Polymers via Linkage Replacement.
    Zhai Y; Liu G; Jin F; Zhang Y; Gong X; Miao Z; Li J; Zhang M; Cui Y; Zhang L; Liu Y; Zhang H; Zhao Y; Zeng Y
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17679-17683. PubMed ID: 31583814
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural Engineering of Covalent Organic Frameworks Comprising Two Electron Acceptors Improves Photocatalytic Performance.
    Zhang J; Cao Y; Liu W; Cao T; Qian J; Wang J; Yao X; Iqbal A; Qin W
    ChemSusChem; 2022 Jan; 15(2):e202101510. PubMed ID: 34752001
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The roles of buckled geometry and water environment in the excitonic properties of graphitic C
    Sun J; Li X; Yang J
    Nanoscale; 2018 Feb; 10(8):3738-3743. PubMed ID: 29411812
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations.
    Raptakis A; Croy A; Dianat A; Gutierrez R; Cuniberti G
    RSC Adv; 2022 Apr; 12(20):12283-12291. PubMed ID: 35480357
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optoelectronic processes in covalent organic frameworks.
    Keller N; Bein T
    Chem Soc Rev; 2021 Feb; 50(3):1813-1845. PubMed ID: 33331358
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Boosting photocatalytic H
    Luo M; Yang Q; Liu K; Cao H; Yan H
    Chem Commun (Camb); 2019 May; 55(41):5829-5832. PubMed ID: 31041962
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design and construction strategies to improve covalent organic frameworks photocatalyst's performance for degradation of organic pollutants.
    Hu SY; Sun YN; Feng ZW; Wang FO; Lv YK
    Chemosphere; 2022 Jan; 286(Pt 1):131646. PubMed ID: 34311396
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity.
    Chen X; Addicoat M; Jin E; Zhai L; Xu H; Huang N; Guo Z; Liu L; Irle S; Jiang D
    J Am Chem Soc; 2015 Mar; 137(9):3241-7. PubMed ID: 25706112
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A critical review of covalent organic frameworks-based sorbents in extraction methods.
    Torabi E; Mirzaei M; Bazargan M; Amiri A
    Anal Chim Acta; 2022 Sep; 1224():340207. PubMed ID: 35998988
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials.
    Pakhira S; Mendoza-Cortes JL
    Phys Chem Chem Phys; 2019 Apr; 21(17):8785-8796. PubMed ID: 30968866
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thiazolo[5,4-d]thiazole-Based Donor-Acceptor Covalent Organic Framework for Sunlight-Driven Hydrogen Evolution.
    Li W; Huang X; Zeng T; Liu YA; Hu W; Yang H; Zhang YB; Wen K
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1869-1874. PubMed ID: 33285029
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Covalent Organic Frameworks: New Materials Platform for Photocatalytic Degradation of Aqueous Pollutants.
    Qian Y; Ma D
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639997
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fluorescent Covalent Organic Frameworks: A Promising Material Platform for Explosive Sensing.
    Qian Y; Li J; Ji M; Li J; Ma D; Liu A; Zhao Y; Yang C
    Front Chem; 2022; 10():943813. PubMed ID: 35910724
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers.
    Liu T; Hu X; Wang Y; Meng L; Zhou Y; Zhang J; Chen M; Zhang X
    J Photochem Photobiol B; 2017 Oct; 175():156-162. PubMed ID: 28888168
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Photothermal Ablation of Tumors.
    Xia R; Zheng X; Li C; Yuan X; Wang J; Xie Z; Jing X
    ACS Nano; 2021 Apr; 15(4):7638-7648. PubMed ID: 33792303
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Decoding Excimer Formation in Covalent-Organic Frameworks Induced by Morphology and Ring Torsion.
    Chakraborty J; Chatterjee A; Molkens K; Nath I; Arenas Esteban D; Bourda L; Watson G; Liu C; Van Thourhout D; Bals S; Geiregat P; Van der Voort P
    Adv Mater; 2024 Jun; 36(26):e2314056. PubMed ID: 38618981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.