These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36032565)

  • 21. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography.
    Jansen SM; de Bruin DM; Faber DJ; Dobbe IJGG; Heeg E; Milstein DMJ; Strackee SD; van Leeuwen TG
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28822141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-exposure Speckle Imaging for Quantitative Evaluation of Cortical Blood Flow.
    Santorelli A; Sullender CT; Dunn AK
    Methods Mol Biol; 2023; 2616():97-111. PubMed ID: 36715931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser speckle contrast imaging, the future DBF imaging technique for TRP target engagement biomarker assays.
    Bamps D; Macours L; Buntinx L; de Hoon J
    Microvasc Res; 2020 May; 129():103965. PubMed ID: 31812705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wavelet Analysis of the Temporal Dynamics of the Laser Speckle Contrast in Human Skin.
    Mizeva I; Dremin V; Potapova E; Zherebtsov E; Kozlov I; Dunaev A
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1882-1889. PubMed ID: 31675309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-spectral laser speckle contrast images using a wavelength-swept laser.
    Kim JW; Jang H; Kim GH; Jun SW; Kim CS
    J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31290292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.
    Rice TB; Kwan E; Hayakawa CK; Durkin AJ; Choi B; Tromberg BJ
    Biomed Opt Express; 2013; 4(12):2880-92. PubMed ID: 24409388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projection mapping system for laser speckle contrast image: feasibility study for clinical application.
    Park S; Yeum I; Ko D; Jung B
    J Biomed Opt; 2023 Sep; 28(9):096001. PubMed ID: 37671114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow.
    Ponticorvo A; Dunn AK
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21113112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Choosing a model for laser speckle contrast imaging.
    Liu C; Kılıç K; Erdener SE; Boas DA; Postnov DD
    Biomed Opt Express; 2021 Jun; 12(6):3571-3583. PubMed ID: 34221679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time visualization of renal microperfusion using laser speckle contrast imaging.
    Heeman W; Maassen H; Calon J; van Goor H; Leuvenink H; van Dam GM; Boerma EC
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34024055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers.
    Ramirez-San-Juan JC; Regan C; Coyotl-Ocelotl B; Choi B
    J Biomed Opt; 2014; 19(10):106009. PubMed ID: 25334006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linguistic Analysis of Laser Speckle Contrast Images Recorded at Rest and During Biological Zero: Comparison With Laser Doppler Flowmetry Data.
    Humeau-Heurtier A; Abraham P; Mahe G
    IEEE Trans Med Imaging; 2013 Dec; 32(12):2311-21. PubMed ID: 24058017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33191685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of vascular structure on laser speckle contrast imaging.
    Jafari CZ; Sullender CT; Miller DR; Mihelic SA; Dunn AK
    Biomed Opt Express; 2020 Oct; 11(10):5826-5841. PubMed ID: 33149989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow.
    Kazmi SM; Richards LM; Schrandt CJ; Davis MA; Dunn AK
    J Cereb Blood Flow Metab; 2015 Jul; 35(7):1076-84. PubMed ID: 25944593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust flow measurement with multi-exposure speckle imaging.
    Parthasarathy AB; Tom WJ; Gopal A; Zhang X; Dunn AK
    Opt Express; 2008 Feb; 16(3):1975-89. PubMed ID: 18542277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoacoustic flow velocity imaging based on complex field decorrelation.
    Pakdaman Zangabad R; Iskander-Rizk S; van der Meulen P; Meijlink B; Kooiman K; Wang T; van der Steen AFW; van Soest G
    Photoacoustics; 2021 Jun; 22():100256. PubMed ID: 33868919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-dynamic-range blood flow rate measurement in a large-diameter vessel.
    Yuan Y; Bi Y; Gao XC; Sun MY; Gao WN
    Appl Opt; 2021 Aug; 60(23):6837-6842. PubMed ID: 34613163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser speckle contrast imaging of the skin: interest in processing the perfusion data.
    Humeau-Heurtier A; Buard B; Mahe G; Abraham P
    Med Biol Eng Comput; 2012 Feb; 50(2):103-5. PubMed ID: 22205575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of optical flow algorithms to laser speckle imaging.
    Aminfar A; Davoodzadeh N; Aguilar G; Princevac M
    Microvasc Res; 2019 Mar; 122():52-59. PubMed ID: 30414869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.