These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36032709)
1. The reliability and validity of gait analysis system using 3D markerless pose estimation algorithms. Liang S; Zhang Y; Diao Y; Li G; Zhao G Front Bioeng Biotechnol; 2022; 10():857975. PubMed ID: 36032709 [TBL] [Abstract][Full Text] [Related]
2. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Ichihashi N Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458 [TBL] [Abstract][Full Text] [Related]
3. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Scataglini S; Abts E; Van Bocxlaer C; Van den Bussche M; Meletani S; Truijen S Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894476 [TBL] [Abstract][Full Text] [Related]
4. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment. Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993 [TBL] [Abstract][Full Text] [Related]
5. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440 [TBL] [Abstract][Full Text] [Related]
6. Validity of an artificial intelligence, human pose estimation model for measuring single-leg squat kinematics. Haberkamp LD; Garcia MC; Bazett-Jones DM J Biomech; 2022 Nov; 144():111333. PubMed ID: 36198251 [TBL] [Abstract][Full Text] [Related]
7. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications. Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887 [TBL] [Abstract][Full Text] [Related]
8. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. Kanko RM; Laende EK; Strutzenberger G; Brown M; Selbie WS; DePaul V; Scott SH; Deluzio KJ J Biomech; 2021 Jun; 122():110414. PubMed ID: 33915475 [TBL] [Abstract][Full Text] [Related]
9. Clinical reliability and validity of a video-based markerless gait evaluation method. Lin J; Wang Y; Sha J; Li Y; Fan Z; Lei W; Yan Y Front Pediatr; 2023; 11():1331176. PubMed ID: 38188911 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional video-based analysis of human gait using pose estimation. Stenum J; Rossi C; Roemmich RT PLoS Comput Biol; 2021 Apr; 17(4):e1008935. PubMed ID: 33891585 [TBL] [Abstract][Full Text] [Related]
11. Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Kato T; Ogino Y; Yamagata M; Ichihashi N Gait Posture; 2020 Jul; 80():62-67. PubMed ID: 32485426 [TBL] [Abstract][Full Text] [Related]
12. Reliability and validity of knee angles and moments in patients with osteoarthritis using a treadmill-based gait analysis system. Pinto RF; Birmingham TB; Leitch KM; Atkinson HF; Jones IC; Giffin JR Gait Posture; 2020 Jul; 80():155-161. PubMed ID: 32512344 [TBL] [Abstract][Full Text] [Related]
13. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters. Ripic Z; Signorile JF; Kuenze C; Eltoukhy M J Biomech; 2022 Oct; 143():111278. PubMed ID: 36063770 [TBL] [Abstract][Full Text] [Related]
14. Development of a Robust, Simple, and Affordable Human Gait Analysis System Using Bottom-Up Pose Estimation With a Smartphone Camera. Viswakumar A; Rajagopalan V; Ray T; Gottipati P; Parimi C Front Physiol; 2021; 12():784865. PubMed ID: 35069246 [TBL] [Abstract][Full Text] [Related]
15. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L; Needham L; McGuigan P; Bilzon J PeerJ; 2022; 10():e12995. PubMed ID: 35237469 [TBL] [Abstract][Full Text] [Related]
16. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [TBL] [Abstract][Full Text] [Related]
17. Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions. Mehdizadeh S; Nabavi H; Sabo A; Arora T; Iaboni A; Taati B J Neuroeng Rehabil; 2021 Sep; 18(1):139. PubMed ID: 34526074 [TBL] [Abstract][Full Text] [Related]
18. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101 [TBL] [Abstract][Full Text] [Related]
19. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. Horsak B; Prock K; Krondorfer P; Siragy T; Simonlehner M; Dumphart B J Biomech; 2024 Mar; 166():112049. PubMed ID: 38493576 [TBL] [Abstract][Full Text] [Related]
20. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]