These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36032976)
21. Resistance-associated mutations to the anti-SARS-CoV-2 agent nirmatrelvir: Selection not induction. Colson P; Delerce J; Pontarotti P; Devaux C; La Scola B; Fantini J; Raoult D J Med Virol; 2024 Feb; 96(2):e29462. PubMed ID: 38363015 [TBL] [Abstract][Full Text] [Related]
22. Large scale analysis of the SARS-CoV-2 main protease reveals marginal presence of nirmatrelvir-resistant SARS-CoV-2 Omicron mutants in Ontario, Canada, December 2021-September 2023. Duvvuri V; Shire F; Isabel S; Braukmann T; Clark S; Marchand-Austin A; Eshaghi A; Bandukwala H; Varghese N; Li Y; Sivaraman K; Hussain H; Cronin K; Sullivan A; Li A; Zygmunt A; Ramotar K; Kus J; Hasso M; Corbeil A; Gubbay J; Patel S Can Commun Dis Rep; 2024 Oct; 50(10):365-374. PubMed ID: 39386278 [TBL] [Abstract][Full Text] [Related]
23. Molecular Mechanism-Driven Discovery of Novel Small Molecule Inhibitors against Drug-Resistant SARS-CoV-2 M Yang J; Fu B; Gou R; Lin X; Wu H; Xue W J Chem Inf Model; 2024 Oct; 64(20):7998-8009. PubMed ID: 39387184 [TBL] [Abstract][Full Text] [Related]
24. Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir. Hu Y; Lewandowski EM; Tan H; Zhang X; Morgan RT; Zhang X; Jacobs LMC; Butler SG; Gongora MV; Choy J; Deng X; Chen Y; Wang J ACS Cent Sci; 2023 Aug; 9(8):1658-1669. PubMed ID: 37637734 [TBL] [Abstract][Full Text] [Related]
25. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. Noske GD; de Souza Silva E; de Godoy MO; Dolci I; Fernandes RS; Guido RVC; Sjö P; Oliva G; Godoy AS J Biol Chem; 2023 Mar; 299(3):103004. PubMed ID: 36775130 [TBL] [Abstract][Full Text] [Related]
26. Analysis of SARS-CoV-2 Mutations after Nirmatrelvir Treatment in a Lung Cancer Xenograft Mouse Model. Kang BM; Kim D; Kim J; Baek K; Park S; Shin HE; Lee MH; Kim M; Kim S; Lee Y; Kwon HJ Biomol Ther (Seoul); 2024 Jul; 32(4):481-491. PubMed ID: 38835145 [TBL] [Abstract][Full Text] [Related]
27. Discovery of Nirmatrelvir Resistance Mutations in SARS-CoV-2 3CLpro: A Computational-Experimental Approach. Havranek B; Demissie R; Lee H; Lan S; Zhang H; Sarafianos S; Ayitou AJ; Islam SM J Chem Inf Model; 2023 Nov; 63(22):7180-7188. PubMed ID: 37947496 [TBL] [Abstract][Full Text] [Related]
28. Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans. Eng H; Dantonio AL; Kadar EP; Obach RS; Di L; Lin J; Patel NC; Boras B; Walker GS; Novak JJ; Kimoto E; Singh RSP; Kalgutkar AS Drug Metab Dispos; 2022 May; 50(5):576-590. PubMed ID: 35153195 [TBL] [Abstract][Full Text] [Related]
29. Oral Nirmatrelvir/Ritonavir Therapy for COVID-19: The Dawn in the Dark? Hung YP; Lee JC; Chiu CW; Lee CC; Tsai PJ; Hsu IL; Ko WC Antibiotics (Basel); 2022 Feb; 11(2):. PubMed ID: 35203821 [TBL] [Abstract][Full Text] [Related]
30. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Ullrich S; Ekanayake KB; Otting G; Nitsche C Bioorg Med Chem Lett; 2022 Apr; 62():128629. PubMed ID: 35182772 [TBL] [Abstract][Full Text] [Related]
35. Miniaturized Modular Click Chemistry-enabled Rapid Discovery of Unique SARS-CoV-2 M Yang M; Lee MK; Gao S; Song L; Jang HY; Jo I; Yang CC; Sylvester K; Ko C; Wang S; Ye B; Tang K; Li J; Gu M; Müller CE; Sträter N; Liu X; Kim M; Zhan P Adv Sci (Weinh); 2024 Nov; 11(43):e2404884. PubMed ID: 39319611 [TBL] [Abstract][Full Text] [Related]
36. Nirmatrelvir Resistance-de Novo E166V/L50V Mutations in an Immunocompromised Patient Treated With Prolonged Nirmatrelvir/Ritonavir Monotherapy Leading to Clinical and Virological Treatment Failure-a Case Report. Zuckerman NS; Bucris E; Keidar-Friedman D; Amsalem M; Brosh-Nissimov T Clin Infect Dis; 2024 Feb; 78(2):352-355. PubMed ID: 37596935 [TBL] [Abstract][Full Text] [Related]
37. Predicting Antiviral Resistance Mutations in SARS-CoV-2 Main Protease with Computational and Experimental Screening. Sasi VM; Ullrich S; Ton J; Fry SE; Johansen-Leete J; Payne RJ; Nitsche C; Jackson CJ Biochemistry; 2022 Nov; 61(22):2495-2505. PubMed ID: 36326185 [TBL] [Abstract][Full Text] [Related]
38. Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors. Kovalevsky A; Aniana A; Ghirlando R; Coates L; Drago VN; Wear L; Gerlits O; Nashed NT; Louis JM J Med Chem; 2024 Oct; 67(20):18478-18490. PubMed ID: 39370853 [TBL] [Abstract][Full Text] [Related]
39. Low Prevalence of Nirmatrelvir-Ritonavir Resistance-Associated Mutations in SARS-CoV-2 Lineages From Botswana. Choga WT; Bareng OT; Moraka NO; Maruapula D; Gobe I; Ndlovu NS; Zuze BJL; Motshosi PC; Seru KB; Matsuru T; Boitswarelo M; Matshaba M; Gaolathe T; Mosepele M; Makhema J; Tamura TJM; Li JZ; Shapiro R; Lockman S; Gaseitsiwe S; Moyo S Open Forum Infect Dis; 2024 Jul; 11(7):ofae344. PubMed ID: 39015352 [TBL] [Abstract][Full Text] [Related]
40. Contributions of Hyperactive Mutations in M Flynn JM; Zvornicanin SN; Tsepal T; Shaqra AM; Kurt Yilmaz N; Jia W; Moquin S; Dovala D; Schiffer CA; Bolon DNA ACS Infect Dis; 2024 Apr; 10(4):1174-1184. PubMed ID: 38472113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]