These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36033332)

  • 1. Anthropomorphic Polydimethylsiloxane silicone-based phantom for Diffuse Optical Imaging.
    Waks Serra MV; Noseda Grau V; Vera DA; Jodra S; García HA; Carbone NA; Pardini PA; Pomarico JA; Iriarte DI
    Heliyon; 2022 Aug; 8(8):e10308. PubMed ID: 36033332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics.
    Kennedy GT; Lentsch GR; Trieu B; Ponticorvo A; Saager RB; Durkin AJ
    J Biomed Opt; 2017 Jul; 22(7):76013. PubMed ID: 28727869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.
    Chen AI; Balter ML; Chen MI; Gross D; Alam SK; Maguire TJ; Yarmush ML
    Med Phys; 2016 Jun; 43(6):3117-3131. PubMed ID: 27277058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine.
    Lualdi M; Colombo A; Farina B; Tomatis S; Marchesini R
    Lasers Surg Med; 2001; 28(3):237-43. PubMed ID: 11295758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.
    Greening GJ; Istfan R; Higgins LM; Balachandran K; Roblyer D; Pierce MC; Muldoon TJ
    J Biomed Opt; 2014; 19(11):115002. PubMed ID: 25387084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.
    Wróbel MS; Popov AP; Bykov AV; Tuchin VV; Jędrzejewska-Szczerska M
    Biomed Opt Express; 2016 Jun; 7(6):2088-94. PubMed ID: 27375928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable phantom materials for ultrasound and optical imaging.
    Cabrelli LC; Pelissari PI; Deana AM; Carneiro AA; Pavan TZ
    Phys Med Biol; 2017 Jan; 62(2):432-447. PubMed ID: 27997374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and quantitative characterization of polydimethylsiloxane optical phantoms with zinc-phthalocyanine dye absorbers.
    Monte AFG; Reis AF; Cruz Junior LB; Antunes A
    Appl Opt; 2018 Jul; 57(20):5865-5871. PubMed ID: 30118059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions.
    Robbins CM; Raghavan G; Antaki JF; Kainerstorfer JM
    J Biomed Opt; 2017 Aug; 22(12):1-9. PubMed ID: 28831792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PVCP-based anthropomorphic breast phantoms containing structures similar to lactiferous ducts for ultrasound imaging: A comparison with human breasts.
    De Matheo LL; Geremia J; Calas MJG; Costa-Júnior JFS; da Silva FFF; von Krüger MA; Pereira WCA
    Ultrasonics; 2018 Nov; 90():144-152. PubMed ID: 29966842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A statistically defined anthropomorphic software breast phantom.
    Lau BA; Reiser I; Nishikawa RM; Bakic PR
    Med Phys; 2012 Jun; 39(6):3375-85. PubMed ID: 22755718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom layer absorption coefficients extraction from two-layer phantoms based on crossover point in diffuse reflectance.
    Rudraiah PS; Duadi H; Fixler D
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34850612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and characterization of viscoelastic polydimethylsiloxane phantoms for simulating arterial wall motion.
    Kim JH; Chhai P; Rhee K
    Med Eng Phys; 2021 May; 91():12-18. PubMed ID: 34074461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Breast Phantoms for Microwave, Ultrasound, Mammography, Magnetic Resonance and Computed Tomography Imaging.
    Ruvio G; Solimene R; Cuccaro A; Fiaschetti G; Fagan AJ; Cournane S; Cooke J; Ammann MJ; Tobon J; Browne JE
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast phantom with silicone implant for evaluation in conventional mammography.
    Silva FA; Souza LF; Salmon CE; Souza DN
    J Appl Clin Med Phys; 2010 Sep; 12(1):3340. PubMed ID: 21330982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.
    Freed M; Badal A; Jennings RJ; de las Heras H; Myers KJ; Badano A
    Phys Med Biol; 2011 Jun; 56(12):3513-33. PubMed ID: 21606556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrically complex 3D-printed phantoms for diffuse optical imaging.
    Dempsey LA; Persad M; Powell S; Chitnis D; Hebden JC
    Biomed Opt Express; 2017 Mar; 8(3):1754-1762. PubMed ID: 28663863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments.
    Ebert B; Sukowski U; Grosenick D; Wabnitz H; Moesta KT; Licha K; Becker A; Semmler W; Schlag PM; Rinneberg H
    J Biomed Opt; 2001 Apr; 6(2):134-40. PubMed ID: 11375722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.